1st Year Curriculum for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits

B. Range of credits:

A range of credits from 150 to 160 for a student to be eligible to get B.Tech Degree in Engineering. A student will be eligible to get B.Tech Degree *with Honours*, if he/she completes an additional 20 credits. These could be acquired through Massive Open Online Courses (MOOCs).

C. MOOCs for B. Tech Honours

The additional 20 credits (for obtaining B. Tech with Honours) are to be gained through MOOCs. The complete description of the MOOCs relevant for the first year course are given in *Annexure-I*. The courses for subsequent years of study will be posted subsequently.

D. Guidelines regarding Mandatory Induction Program for the new students

All concerned are requested to follow the guidelines given in *Annexure-II* (Notice dt.06/12/2017) concerning Mandatory Induction Program. The colleges/ Institute may also refer to the AICTE Model Curriculum for Undergraduate Degree Courses in Engineering & Technology (January 2018) -Volume I (Page No.31-38), if necessary.

E. Mandatory Additional Requirement for earning B. Tech Degree

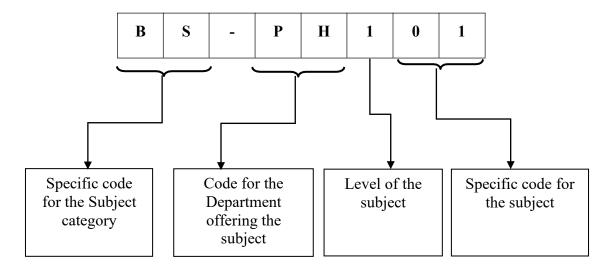
All concerned are requested to follow the guidelines in *Annexure-III* concerning Mandatory Additional Requirements.

F. Group division:

Group-A:

Chemistry based subjects: [Bio-Technology, Food Technology, Leather Technology, Textile Technology, Ceramic Technology, Chemical Engineering and any other Engineering that chooses to be Chemistry based] + Physics based subjects: [Mechanical Engineering, Production Engineering, Civil Engineering, Automobile Engineering, Marine Engineering, Apparel Production Engineering, Computer Science & Engineering, Information Technology.]

Group-B:


All Physics based subjects which are also Electrical & Electronics based [Electrical Engineering, Electronics & Communication Engineering, Applied Electronics & Instrumentation Engineering, Power Engineering, Electrical & Electronics Engineering, Bio-Medical Engineering, Instrumentation & Control Engineering]

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

G. Subject Numbering Scheme:

List of Codes for Subject Category			
Code	Category Name		
BS	Basic Science Courses		
ES	Engineering Science Courses		
НМ	Humanities and Social Sciences including Management courses		
PC	Professional core courses		
PE	Professional Elective courses		
OE	Open Elective courses		
MC	Mandatory courses		
PW	Project		

	List of Codes for Departments						
Code	Name of the Department	Code	Name of the Department				
APM	Apparel Production Engineering	ECE	Electronics & Communication Engineering				
AEIE	Applied Electronics & Instrumentation Engineering	FT	Food Technology				
AUE	Automobile Engineering	IT	Information Technology				
BME	Bio-Medical Engineering	ICE	Instrumentation & Control Engineering				
BT	Bio-Technology	LT	Leather Technology				
CT	Ceramic Technology	MRE	Marine Engineering				
CHE	Chemical Engineering	ME	Mechanical Engineering				
CE	Civil Engineering	PWE	Power Engineering				
CSE	Computer Science & Engineering	PE	Production Engineering				
EEE	Electrical & Electronics Engineering	TT	Textile Technology				
EE	Electrical Engineering						

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	First Year First Semester										
	Mandatory Induction Program- 3 weeks duration										
SI	Category	Subject Code			Total Number of contact hours						
No.				L	T	P					
The	ory										
1	Basic Science course	BS-PH101/ BS-CH101	Physics-I (Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4				
2	Basic Science course	BS-M101/ BS-M102	Mathematics –IA*/ Mathematics –IB *	3	1	0	4				
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4				
	Total Theory		9	3	0	12					
Prac	ctical										
1	Basic Science course	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	0	0	3	1.5				
2	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	1				
3	Engineering Science Courses	ES-ME191/ ES-ME192	Engineering Graphics & Design(Gr-B)/ Workshop/Manufacturing Practices(Gr-A)	1	0	4	3				
		Total Praction	cal	1		9	5.5				
		Total of First Se	mester	10	3	9	17.5				

^{*} Mathematics –IA (BS-M101) - CSE & IT Mathematics –IB (BS-M102) - All stream except CSE & IT

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	First Year Second Semester						
SI	Category	Subject				Credits	
No.	<i>.</i>	Code	,	L	T	P	
The	ory						
1	Basic Science courses	BS-PH201/ BS-CH201	Physics-I (Gr-B)/ Chemistry-I (Gr-A)	3	1	0	4
2	Basic Science courses	BS-M201/ BS-M202	Mathematics –IIA [#] / Mathematics –IIB [#]	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4	Humanities and Social Sciences including Management courses	HM-HU201	English	2	0	0	2
		Total Theory		11	2	0	13
Prac	etical						
1	Basic Science courses	BS-PH291/ BS-CH291	Physics-I Laboratory (Gr-B)/ Chemistry-I Laboratory (Gr-A)	0	0	3	1.5
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design(Gr-A)/ Workshop/Manufacturing Practices(Gr-B)	1	0	4	3
4	Humanities and Social Sciences including Management courses	HM-HU291	Language Laboratory	0	0	2	1
		Total Practica	l	1	0	13	7.5
	Total of Second Semester				2	13	20.5

Mathematics –II (BS-M201) - CSE & IT Mathematics –II (BS-M202) - All stream except CSE & IT

	Group-A	Group-B
1 st Year 1 st Semester	Physics-I (BS-PH101); Workshop/Manufacturing Practices (ES-ME192)	Chemistry-I (BS-CH101); Engineering Graphics & Design (ES-ME191)
1 st Year 2 nd Semester	Chemistry-I (BS-CH201); Engineering Graphics & Design (ES-ME291)	Physics-I (BS-PH201); Workshop/Manufacturing Practices (ES-ME292)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-PH101/BS-PH201	Category: Basic Science Courses
Course Title : Physics-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Course objectives:

Basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

1. Mechanics (7L)

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

2. Optics (5L)

- Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer
 diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity
 and qualitative discussion of fringes); diffraction grating(resolution formulae only), characteristics of
 diffration grating and its applications.
- Polarisation: Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.
- Lasers: Principles and working of laser: population inversion, pumping, various modes, threshold population inversion with examples.

3. Electromagnetism and Dielectric Magnetic Properties of Materials (8L)

- Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.
- Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

4. Quantum Mechanics (16L)

Introduction to quantum physics, black body radiation, explanation using the photon concept,
 Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves,
 uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator,
 hydrogen atom.

5. Statistical Mechanics (8L)

• Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Course outcomes:

Students will be familiar with

- Basic concepts of mechanics
- Bragg's Law and introduction to the principles of lasers, types of lasers and applications.
- Various terms related to properties of materials such as, permeability, polarization, etc.
- Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials.
- Simple quantum mechanics calculations.

•

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley
- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- 4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- 8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill
- 10. Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education
- 14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau , E.M. Lifshitz, Butterworth-Heinemann

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-CH101/BS-CH201	Category: Basic Science Courses
Course Title : Chemistry-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Detailed contents

i) Atomic and molecular structure (10 lectures)

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H₂). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering. iii)Intermolecular forces and potential energy surfaces (4 lectures)

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

iv) Use of free energy in chemical equilibria (8 lectures)

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

vi) Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Course Outcomes

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.

Rationalise bulk properties and processes using thermodynamic considerations.

Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.

List major chemical reactions that are used in the synthesis of molecules.

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. University chemistry, by B. H. Mahan
- 3. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 4. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 5. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 6. Physical Chemistry, by P. W. Atkins
- 7. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 8. Physical Chemistry, P. C. Rakshit, Sarat Book House
- 9. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-M101	Category: Basic Science Course
Course Title: Mathematics – I A	Semester : First (CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	,

Module	Description of Topic	Lectures
No.		Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	
1	Gamma functions and their properties; Applications of definite integrals to evaluate	8
1	surface areas and volumes of revolutions.	O
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	
2		6
	Matrices:	
	Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear	
	systems of equations, linear Independence, rank of a matrix, determinants,	_
3	Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan	7
	elimination.	
	Vector Spaces:	
	Vector Space, linear dependence of vectors, Basis, Dimension; Linear	
	transformations (maps), Range and Kernel of a linear map, Rank and Nullity,	
4	Inverse of a linear transformation, Rank-Nullity theorem, composition of linear	9
	maps, Matrix associated with a linear map.	
	Vector Spaces (Continued):	
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal	
_	Matrices, Eigenbases.	1.0
5	Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	10

Course Outcomes:

The students will be able to:

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.

Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.

Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 8. Hoffman and Kunze: Linear algebra, PHI.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-M102	Category: Basic Science Course
Course Title: Mathematics –I B	Semester: First (All stream except CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	·

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	8
1	Gamma functions and their properties; Applications of definite integrals to	-
	evaluate surface areas and volumes of revolutions.	
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	6
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	O
	Sequence and Series:	
	Convergence of sequence and series, tests for convergence; Power series,	11
3	Taylor's series, series for exponential, trigonometric and logarithm functions;	11
	Fourier series: Half range sine and cosine series, Parseval's theorem.	
	Multivariate Calculus:	
	Limit, continuity and partial derivatives, Directional derivatives, Total	9
4	derivative; Tangent plane and normal line; Maxima, minima and saddle points;	
	Method of Lagrange multipliers; Gradient, Curl and Divergence.	
	Matrices:	
	Inverse and rank of a matrix, Rank-nullity theorem; System of linear equations;	8
5	Symmetric, Skew-symmetric and Orthogonal matrices; Determinants;	O
	Eigenvalues and Eigenvectors; Diagonalization of matrices; Cayley-Hamilton	
	Theorem, and Orthogonal transformation.	

Course Outcomes:

After completing the course the student will be able to

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn the tools of power series and Fourier series to analyze engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines.

Apply the knowledge for addressing the real life problems which comprises of several variables or attributes and identify extremum points of different surfaces of higher dimensions.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Understand different types of matrices, their eigen values, eigen vectors, rank and also their orthogonal transformations which are essential for understanding physical and engineering problems.

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE101	Category: Engineering Science Courses		
Course Title: Basic Electrical Engineering	Semester : First		
L-T-P : 3-1-0	Credit: 4		
Pre-Requisites:			

Detailed contents:

Module 1: DC Circuits (8 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits (8 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers (6 hours)

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines (8 hours)

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

Module 5: Power Converters (6 hours)

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations (6 hours)

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes

To understand and analyze basic electric and magnetic circuits

To study the working principles of electrical machines and power converters.

To introduce the components of low voltage electrical installations

Learning Recourses:

- 1. Ritu Sahdev, Basic Electrical Engineering, Khanna Book Publishing Co. (P) Ltd., Delhi.
- 2. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 4. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 5. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 6. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-PH191/ BS-PH291	Category: Basic Science course
Course Title : Physics-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	·

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Experiments in Optics

- 1. Determination of dispersive power of the material of a prism
- 2. Determination of wavelength of a monochromatic light by Newton's ring
- 3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism
- 4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section
- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire
- 6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-CH191/BS-CH291	Category: Basic Science Courses
Course Title: Chemistry-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments from the following:

- 1. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 3. Determination of dissolved oxygen present in a given water sample.
- 4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt
- 13. Determination of the partition coefficient of a substance between two immiscible liquids
- 14. Adsorption of acetic acid by charcoal
- 15. Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE191	Category: Engineering Science Courses		
Course Title: Basic Electrical Engineering Laboratory	Semester : First		
L-T-P : 0-0-2	Credit: 1		
Pre-Requisites:			

Choose 10 experiments from the following:

- 1. First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting down list of experiments to be performed, and instruction for writing the laboratory reports by the students. Group formation. Students are to be informed about the modalities of evaluation.
- 2. Introduction and uses of following instruments:
 - (a) Voltmeter
 - (b) Ammeter
 - (c) Multimeter
 - (d) Oscilloscope

Demonstration of real life resistors, capacitors with color code, inductors and autotransformer.

- 3. Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous machine and single phase induction machine.
- 4. Calibration of ammeter and Wattmeter.
- 5. Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change in voltage.
- 6. Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.
- 7. Determination of resonance frequency and quality factor of series and parallel R-L-C circuit.
- 8. (a) Open circuit and short circuit test of a single-phase transformer
 - (b) Load test of the transformer and determination of efficiency and regulation
- 9. Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts between the primary and secondary side.
- 10. Measurement of power in a three phase unbalanced circuit by two wattmeter method.
- 11. Determination of Torque –Speed characteristics of separately excited DC motor.
- 12. Determination of Torque speed characteristics and observation of direction reversal by change of phase sequence of connection of Induction motor.
- 13. Determination of operating characteristics of Synchronous generator.
- 14. Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter for speed control of an Induction motor
- 15. Demonstration of components of LT switchgear.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Course Code: ES-ME191/ES-ME 291	Category: Engineering Science Courses
Course Title: Engineering Graphics & Design	Semester : First/ Second
L-T-P : 1-0-4	Credit: 3
Pre-Requisites:	

Sl. No.	Content	Lecture (L)	Practical (P)
	INTRODUCTION TO ENGINEERING DRAWING		
	Principles of Engineering Graphics and their significance, usage of		
1	Drawing instruments, lettering, Different types of lines and their use;	1	4
	Drawing standards and codes.		
	LETTERING, DIMENSIONING, SCALES		
2	Plain scale, Diagonal scale and Vernier Scales.	1	4
	GEOMETRICAL CONSTRUCTION AND CURVES		
	Construction of polygons, Conic sections including the Rectangular		
3	Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid,	1	4
	Involute, Archemedian Spiral.		
	PROJECTION OF POINTS, LINES, SURFACES		
	Principles of Orthographic Projections-Conventions - 1st and 3rd angle		
4	projection, Projections of Points and lines inclined to both planes;	1	4
	Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes		
	- Auxiliary Planes.		
	PROJECTION OF REGULAR SOLIDS		
	Regular solids inclined to both the Planes- Auxiliary Views; Draw		
5	simple annotation, dimensioning and scale (Cube, Pyramid, Prism,	1	4
	Cylinder, Cone).		
	COMBINATION OF REGULAR SOLIDS, FLOOR PLANS		
	Regular solids in mutual contact with each other like Spheres in contact		
6	with cones standing on their base. Floor plans that include: windows,	1	4
	doors, and fixtures such as WC, bath, sink, shower, etc.		
	ISOMETRIC PROJECTIONS		
	Principles of Isometric projection – Isometric Scale, Isometric		
7	Views, Conventions; Isometric Views of lines, Planes, Simple and	1	4
	compound Solids; Conversion of Isometric Views to Orthographic		
	Views and Vice-versa, Conventions;		

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

	SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR		
	SOLIDS		
	Prism, Cylinder, Pyramid, Cone - Auxiliary Views; Development of		
8	surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;	1	4
	Draw the sectional orthographic views of geometrical solids, objects		
	from industry and dwellings (foundation to slab only)		
	OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION&		
	CAD DRAWING		
	listing the computer technologies that impact on graphical		
	communication, Demonstrating knowledge of the theory of CAD		
	software [such as: The Menu System, Toolbars (Standard, Object		
	Properties, Draw, Modify and Dimension), Drawing Area (Background,		
	Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut		
	menus (Button Bars), The Command Line (where applicable), The Status	_	
9	Bar, Different methods of zoom as used in CAD, Select and erase	1	4
	objects.; Isometric Views of lines, Planes, Simple and compound Solids];		
	Set up of the drawing page and the printer, including scale settings,		
	Setting up of units and drawing limits; ISO and ANSI standards for		
	coordinate dimensioning and tolerancing; Orthographic constraints,		
	Snap to objects manually and automatically; Producing drawings		
	by using various coordinate input entry methods to draw straight lines,		
	Applying various ways of drawing circles;		
	ANNOTATIONS, LAYERING & OTHER FUNCTIONS		
	applying dimensions to objects, applying annotations to drawings;		
	Setting up and use of Layers, layers to create drawings, Create, edit		
	and use customized layers; Changing line lengths through modifying		
	existing lines (extend/lengthen); Printing documents to paper using		
	the print command; orthographic projection techniques; Drawing		
	sectional views of composite right regular geometric solids and project		
10	the true shape of the sectioned surface; Drawing annotation, Computer-	2	8
	aided design (CAD) software modeling of parts and assemblies.		
	Parametric and non-parametric solid, surface, and wireframe models. Part		
	editing and two-dimensional documentation of models. Planar projection		
	theory, including sketching of perspective, isometric, multiview,		
	auxiliary, and section views. Spatial visualization exercises.		
	Dimensioning guidelines, tolerancing techniques; dimensioning and scale		
	multi views of dwelling;		

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT	,		
	Geometry and topology of engineered components: creation of			
	engineering models and their presentation in standard 2D blueprint form			
	and as 3D wire-frame and shaded solids; meshed topologies for			
	engineering analysis and tool-path generation for component			
	manufacture; geometric dimensioning and tolerancing; Use of solid-			
11	modeling software for creating associative models at the component and	2	8	
	assembly levels; floor plans that include: windows, doors, and fixtures			
	such as WC, bath, sink, shower, etc. Applying colour coding according to			
	building drawing practice; Drawing sectional elevation showing			
	foundation to ceiling; Introduction to Building Information Modelling			
	(BIM).			
1			1	

Course Outcomes

The student will learn:

- Introduction to engineering design and its place in society
- Exposure to the visual aspects of engineering design
- Exposure to engineering graphics standards
- Exposure to solid modelling

General Instructions

- 1. In every topic some problems are to be done in the class and some are to be given to students as home assignment.
- 2. The problems for class work are to be prepared on drawing sheet of A1 size in the class/ using AutoCAD software.
- 3. The problems for home assignments are to be prepared on drawing copy/ using AutoCAD software.
- 4. Print out of every assignment is to be taken for CAD Drawings on Drawing sheets (A4 Sheets).
- 5. A title block must be prepared in each sheet/assignment.

Following is the list of drawing instruments that required for making engineering drawings on paper with perfection.

- 1. Drawing Board
- 2. Mini drafter/ Set-squares (45°–45° & 60°–90°), T-square
- 3. Protractor (180°, 360°)
- 4. Scales (Plain, Diagonal)
- 5. Compass (Small and Large)
- 6. Divider (Small and Large)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

- 7. French Curves
- 8. Drawing paper (A1 Size)
- 9. Drawing pencil (H, HB, B)
- 10. Sharpener
- 11. Eraser
- 12. Drawing pins & clips
- 13. Duster or handkerchief etc.

- 1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House
- 2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 6. Corresponding set of CAD Software Theory and User Manuals

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-ME192/ ES-ME 292	Category: Engineering Science Courses		
Course Title: Workshop/ Manufacturing Practices	Semester : First/ Second		
L-T-P : 1-0-4	Credit:3		
Pre-Requisites:			

(i) Lectures & videos:

Detailed contents:

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical &Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

Machine shop (8 hours)

Typical jobs that may be made in this practice module:

To make a pin from a mild steel rod in a lathe.

To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop (8 hours)

Typical jobs that may be made in this practice module:

To make a Gauge from MS plate.

Carpentry (8 hours)

Typical jobs that may be made in this practice module:

To make wooden joints and/or a pattern or like.

Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module:

ARC WELDING (4 hours): To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding.

Casting (8 hours)

Typical jobs that may be made in this practice module:

One/ two green sand moulds to prepare, and a casting be demonstrated.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Smithy (4 hours) \sim 4 hours

Typical jobs that may be made in this practice module:

A simple job of making a square rod from a round bar or like.

Plastic moulding & Glass cutting (4 hours)

Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made.

For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

Electrical & Electronics (8 hours)

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point.

Simple wiring exercise to be executed to understand the basic electrical circuit.

Simple soldering exercises to be executed to understand the basic process of soldering.

Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Laboratory Outcomes

Upon completion of this laboratory course, students will be able to fabricate components with their own hands.

They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.

By assembling different components, they will be able to produce small devices of their interest.

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu, "Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-M201	Category: Basic Science Course	
Course Title: Mathematics – II A	Semester : Second (CSE &IT)	
L-T-P : 3-1-0	Credit: 4	
Pre-Requisites: High School Mathematics and BS-M101		

Module No.	Description of Topic	Lectures Hours
	Basic Probability: Probability spaces, conditional probability, independence;	
1	Discrete random variables, Independent random variables, the Multinomial	
	distribution, Poisson approximation to the Binomial distribution, infinite sequences	11
	of Bernoulli trials, sums of independent random variables; Expectation of Discrete	
	Random Variables, Moments, Variance of a sum, Correlation coefficient,	
	Chebyshev's Inequality.	
	Continuous Probability Distributions:	
2	Continuous random variables and their properties, Distribution functions and	4
_	densities, Normal, Exponential and Gamma densities.	
	Bivariate Distributions:	_
3	Bivariate distributions and their properties, distribution of sums and quotients,	5
J	Conditional densities, Bayes' rule.	
	Basic Statistics:	
4	Measures of Central tendency, Moments, Skewness and Kurtosis, Probability	8
•	distributions: Binomial, Poisson and Normal and evaluation of statistical	
	parameters for these three distributions, Correlation and regression - Rank	
	correlation.	
	Applied Statistics:	
5	Curve fitting by the method of least squares- fitting of straight lines, second degree	8
J	parabolas and more general curves. Test of significance: Large sample test for	
	single proportion, difference of proportions, single mean, difference of means, and	
	difference of standard deviations.	
6	Small samples:	
	Test for single mean, difference of means and correlation coefficients, test for ratio	4
	of variances - Chi-square test for goodness of fit and independence of attributes.	

Course Outcomes:

The students will be able to:

Learn the ideas of probability and random variables, various discrete and continuous probability distributions with their properties and their applications in physical and engineering environment.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Understand the basic ideas of statistics with different characterisation of a univariate and bivariate data set.

Apply statistical tools for analysing data samples and drawing inference on a given data set.

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
- 3. S. Ross, A First Course in Probability, Pearson Education India
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.
- 5. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 7. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Course Code: BS-M202

Category: Basic Science Course

Course Title: Mathematics – II B

Semester: Second (All stream except CSE & IT)

L-T-P: 3-1-0

Credit: 4

Pre-Requisites: High School Mathematics and BS-M102

Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions: Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral	Module No.	Description of Topic	Lectures Hours
in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Multivariate Calculus (Integration):	
in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	1	Multiple Integration: Double integrals (Cartesian), change of order of integration	11
integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		in double integrals, change of variables (Cartesian to Polar), Applications: Areas	11
involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		and volumes, Center of mass and Gravity (constant and variable densities); Triple	
vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications	
Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals,	
First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		vector line integrals, scalar surface integrals, vector surface integrals, Theorems of	
Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. **Ordinary differential equations of higher orders:* Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Green, Gauss and Stokes.	
solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. **Ordinary differential equations of higher orders:* Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable - Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable - Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		First order ordinary differential equations:	
solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. **Ordinary differential equations of higher orders:* Second order linear differential equations with constant coefficients, Use of D-operators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	2	Exact, linear and Bernoulli's equations, Equations not of first degree: equations	5
3 Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	2	solvable for p, equations solvable for y, equations solvable for x and Clairaut's	3
Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		type.	
operators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Ordinary differential equations of higher orders:	
operators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	3	Second order linear differential equations with constant coefficients, Use of D-	
Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	3	operators, Second order linear differential equations with variable coefficients,	9
Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		method of variation of parameters, Cauchy-Euler equation; Power series solutions;	
Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Legendre polynomials, Bessel functions of the first kind and their properties.	
functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Complex Variable – Differentiation	
functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	4	Differentiation of complex functions, Cauchy-Riemann equations, Analytic	
Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	7	functions, Harmonic functions, determination of harmonic conjugate, elementary	6
Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		analytic functions (exponential, trigonometric, logarithmic) and their properties;	
Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Conformal mappings, Mobius transformations and their properties.	
formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of		Complex Variable – Integration	
formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	5	Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral	
Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	3	formula (without proof), Liouville's theorem and Maximum-Modulus theorem	9
		(without proof); Taylor's series, Zeros of analytic functions, Singularities,	
definite integral involving sine and cosine, Evaluation of certain improper integrals		Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
		definite integral involving sine and cosine, Evaluation of certain improper integrals	
using the Bromwich contour.		using the Bromwich contour.	

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes:

The students will be able to:

Learn the methods for evaluating multiple integrals and their applications to different physical problems.

Understand different techniques to solve first and second order ordinary differential equations with its formulation to address the modelling of systems and problems of engineering sciences.

Learn different tools of differentiation and integration of functions of a complex variable that are used with various other techniques for solving engineering problems.

Apply different types of transformations between two 2- dimensional planes for analysis of physical or engineering problems.

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. E. L. Ince, Ordinary Differential Equations, Dover Publications.
- 8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, Mc-Graw Hill.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-CS201	Category: Engineering Science Courses
Course Title: Programming for Problem Solving	Semester : Second
L-T-P : 3-0-0	Credit:3
Pre-Requisites:	

Detailed contents

Unit 1: Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures)

Unit 2: Arithmetic expressions and precedence (2 lectures)

Unit 3: Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures)

Iteration and loops (3 lectures)

Unit 4: Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms (6 lectures)

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Unit 7: Recursion (4 -5 lectures)

Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 8: Structure (4 lectures)

Structures, Defining structures and Array of Structures

Unit 9: Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

Unit 10: File handling (only if time is available, otherwise should be done as part of the lab)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes

The student will learn

To formulate simple algorithms for arithmetic and logical problems.

To translate the algorithms to programs (in C language).

To test and execute the programs and correct syntax and logical errors.

To implement conditional branching, iteration and recursion.

To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

To use arrays, pointers and structures to formulate algorithms and programs.

To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.

To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

- 1. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Category: Engineering Science Courses
Semester : Second
Credit:2

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

Laboratory Outcomes

To formulate the algorithms for simple problems

To translate given algorithms to a working and correct program

To be able to correct syntax errors as reported by the compilers

To be able to identify and correct logical errors encountered at run time

To be able to write iterative as well as recursive programs

To be able to represent data in arrays, strings and structures and manipulate them through a program

To be able to declare pointers of different types and use them in defining self-referential structures.

To be able to create, read and write to and from simple text files.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : HM-HU201	Category: Humanities and Social Sciences including Management courses
Course Title : English	Semester : Second
L-T-P : 2-0-0	Credit:2
Pre-Requisites:	

Detailed contents

1. Vocabulary Building

- 1.1 The concept of Word Formation: Compounding, Backformation, Clipping, Blending.
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations: Acronyms

2. Basic Writing Skills

- 2.1 Sentence Structures & Types: Simple, Compound, Complex
- 2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence: Arranging paragraphs & Sentences in logical order
- 2.5 Creating Cohesion: Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

3. Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

4. Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

5. Writing Practices

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing
- 5.4 Business Letter, Cover Letter & CV; E-mail

Addendum

Some examples of English words with foreign roots

Greek Root/Affix	Examples
Anti	Antisocial, antiseptic

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

(Applicable from the academic session 2010-2017)	
Auto	Automatic, autograph
Anthropos	Anthropology, philanthropy
Bio	Biography
Chronos	Time
Di	Dilemma
Bio	Biology
Biblio	Bibliography
Chron	Chronology
Cracy	Contradiction
Geo	Geology
Hyper	Hyperactive
Mania	Kleptomania
Mega	Megaserial
Eu	Eulogy, euphoria
Geo	Geology
Graph	autograph, photograph
Hetero	Heterogeneous
Hyper	Hyperactive
Нуро	hypodermic, hypoglycemia
Macro	Macrocosm
Mega	megalomania
Micro	microcosm

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Mono Monarch Pan Panorama Pathos Pathetic Phobia Hydrophobia Pod (Gk), ped (Latin) Pseudopodia Poly polyglot Tele Telephone Theo Theology, theist Latin Root Examples Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex Non Nonstop	(Applicable from the academic session 2018-2019)	
Pathos Pathetic Phobia Hydrophobia Pod (Gk), ped (Latin) Pseudopodia Poly polyglot Tele Telephone Theo Theology, theist Latin Root Examples Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Multi multinational Nova Novel Multi Multiple, multiplex	Mono	Monarch
Phobia Hydrophobia Pod (Gk), ped (Latin) Pseudopodia Poly polyglot Tele Telephone Theo Theology, theist Latin Root Examples Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Multi Multiple, multiplex Multi Multiple, multiplex	Pan	Panorama
Pod (Gk), ped (Latin) Pseudopodia Poly Poly Poly Poly Poly Poly Poly Pol	Pathos	Pathetic
Poly polyglot Tele Telephone Theo Theology, theist Latin Root Examples Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Phobia	Hydrophobia
Tele Telephone Theo Theology, theist Latin Root Examples Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Pod (Gk), ped (Latin)	Pseudopodia
Theo Theology, theist Latin Root Examples Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Poly	polyglot
Latin RootExamplesAudAudibleBeneBeneficialBrevabbreviate, briefcircumCirculateContraContradictCredCredibleDictDictionFeminaFeminineInterInternet, intervalMagnaMagnificientMalMalnutritionMultimultinationalNovaNovelMultiMultiple, multiplex	Tele	Telephone
Aud Audible Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Theo	Theology, theist
Bene Beneficial Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Latin Root	Examples
Brev abbreviate, brief circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Aud	Audible
circum Circulate Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Bene	Beneficial
Contra Contradict Cred Credible Dict Diction Femina Feminine Inter Inter Internet, interval Magna Magnificient Mal Mal Malnutrition Multi Multi Mova Nova Multi Multiple, multiplex	Brev	abbreviate, brief
Cred Credible Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	circum	Circulate
Dict Diction Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Contra	Contradict
Femina Feminine Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Cred	Credible
Inter Internet, interval Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Dict	Diction
Magna Magnificient Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Femina	Feminine
Mal Malnutrition Multi multinational Nova Novel Multi Multiple, multiplex	Inter	Internet, interval
Multi multinational Nova Novel Multi Multiple, multiplex	Magna	Magnificient
Nova Novel Multi Multiple, multiplex	Mal	Malnutrition
Multiple, multiplex	Multi	multinational
	Nova	Novel
Non Nonstop	Multi	Multiple, multiplex
	Non	Nonstop

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	le academic session 2016-2019)
Pre	Previous, predicate
Re	Redo, rewind
Scrib	Scripture
Spect	Spectator
Trans	Transport
Uni	Unity
Omni	Omnipotent
Semi	Semicircle
Sub	Subway
somnus	Insomnia,
Super	Superman
Sym	Sympathy
scribe	Describe, scribble(write illegibly), inscribe
Trans	Transform
Un	Unnecessary
Uni	Universal

Learning Resources:

- (i) Kulbushan Kumar, R S Salaria, Effective Communication Skills, Khanna Publishing House, Delhi.
- (ii) Practical English Usage. Michael Swan. OUP. 1995.
- (iii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iv) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (v) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (vi) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vii) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- (viii) Universal English Prof. Prasad Kataria Publications, 2019.
- (ix) "Communication Skills for Professionals"-Nira Konar, Prentice Hall of India 2nd edition, New Delhi, 2011
- (x) Gajendra Singh Chauhan, Smita Kashiramka and L. Thimmesha. Functional English. Cengage, 2019.

Course Outcomes

The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : HM-HU291	Category: Humanities and Social Sciences including Management courses
Course Title : Language Laboratory	Semester : Second
L-T-P : 0-0-2	Credit:1
Pre-Requisites:	

1)	Honing 'Listening Skill' and its sub skills through Language Lab Audio device;	3P
2)	Honing 'Speaking Skill' and its sub skills	2P
3)	Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/	
	Voice modulation/ Stress/ Intonation/ Pitch &Accent) of connected speech	2P
4)	Honing 'Conversation Skill' using Language Lab Audio -Visual input;	
	Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone &	
	Role Play Mode)	2P
5)	Introducing 'Group Discussion' through audio -Visual input and acquainting them	
	with key strategies for success	2P
6)	G D Practice Sessions for helping them internalize basic Principles	
	(turn- taking, creative intervention, by using correct body language, courtesies &	
	other soft skills) of GD	4P
7)	Honing 'Reading Skills' and its sub skills using Visual / Graphics/	
	Diagrams /Chart Display/Technical/Non Technical Passages	
	Learning Global / Contextual / Inferential Comprehension;	2P
8)	Honing 'Writing Skill' and its sub skills by using	
	Language Lab Audio -Visual input; Practice Sessions	2P

Course Outcomes

• The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

Annexure-I

MOOCs for B. Tech Honours

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Notice

1st May, 2018

MOOCs for B.Tech Honours

(Applicable from the session 2018-2019)

Preamble

All India Council for Technical Education (AICTE) has introduced Model Curriculum for Bachelor of Technology programme with 160 credits in the entire programme of 4 years, and additional 20 credits will be required to be done for the degree of Bachelor of Technology with Honours. These additional 20 credits will have to be acquired with online courses (MOOCs) as per AICTE. So students will have to complete additional 20 credits through MOOCs within 4 years of time. This creates an excellent opportunity for students to acquire the necessary skill set for employability through massive online courses where the rare expertise of world famous experts from academics and industry are available. Maulana Abul Kalam Azad University of Technology, West Bengal (MAKAUT, WB) has thus decided to introduce AICTE model curriculum for its B.Tech Programmes and suggest baskets for MOOCs available year wise for the four-year long B.Tech programme from the sessions 2018-2019. The basket for MOOCs will be a dynamic one, as courses keep on updating with time. Few essential skill sets required for employability are also identified year wise by MAKAUT, WB. For MOOCs platforms where examination or assessment is absent (like SWAYAM) or where certification is costly (like Coursera or edX), faculty members of the Institutes are to audit the courses and prepare the examination question papers, for the courses undertaken by the students of respective Institutes, so that MAKAUT, WB can conduct examination for the course. The total of 20 credits that is required to be attained for B.Tech Honours degree are distributed over four years in the following way:

For first year : 8 credits
For second year : 4 credits
For third year : 4 credits
For fourth year : 4 credits

A student of first year has to cover courses from at least three skills:

- 1. Computer Programing with Python / R
- 2. Soft skill
- 3. Ethics

Courses are * marked in the above areas

If a student is unable to cover the credits assigned for the first year, he/she can do these courses in either of the subsequent years, but he/she has to choose the courses from the basket of MOOCs announced by MAKAUT,WB from time to time. The same rule will be applicable for the other years of the programme.

The basket for MOOCs for the 1st year B. Tech for the session 2018-2019 are made available herewith.

By order.

MOOCs for First Year, Engineering and Technology

Sl. No	Course	Provider	Duration	Credits	Name of University / Institution
1.	Presentation Skills: Designing Presentation Slides	Coursera *	4 weeks	1	Tomsk State University
2.	Effective Problem-Solving and Decision- Making	Coursera	4 weeks	1	University of California
3.	Communication in the 21st Century Workplace	Coursera *	4 weeks	1	University of California
4.	Psychology at Work	Coursera *	6 weeks	2	University of Western Australia
5.	Critical Thinking & Problem Solving	EdX *	3 weeks	3	Rochester Institute of Technology
6.	Successful Career Development	Coursera	7 weeks	2	University System of Georgia
7.	Working in Teams: A Practical Guide	edX	4 weeks	1	University of Queensland
8.	Communication theory: bridging academia and practice	Coursera	9 weeks	3	Higher School of Economics
9.	Speaking Effectively	NPTEL *	8 weeks	3	Indian Institute of Technology, Kharagpur
10.	Introduction to Philosophy	Coursera	5 weeks	1	University of Edinburgh
11.	Moralities of Everyday Life	Coursera	6 weeks	2	Yale University
12.	Introduction to Logic	Coursera *	10 weeks	3	Stanford University
13	Write Professional Emails in English	Coursera *	5 weeks	2	Georgia Institute of Technology
14	Technical Writing	Coursera	5 weeks	1	Moscow Institute of Physics and Technology
15	Learn to Program: The Fundamentals	Coursera	7 weeks	2	University of Toronto
16	The Science of Everyday Thinking	edX	12 weeks	4	University of Queensland
17	Introduction to Problem Solving and Programming	NPTEL	12 weeks	4	NPTEL
18	The Science of Well Being	Coursera	6 weeks	2	Yale University
19	Developing Soft Skills and Personality	NPTEL	8 weeks	3	
20	Programming Basics	edX	9 weeks	3	IIT Bombay
21	Introduction to Python: Absolute Beginner	EdX *	5 weeks	2	Microsoft
22	Inferential Statistics	Coursera *	7 weeks	2	University of Amsterdam
23	Linear Regression and Modelling	Coursera	4 weeks	1	Duke University
24	Foundation of Data Structures	edX	6 weeks	2	IIT Bombay
25	Introduction to Logic	NPTEL	12 weeks	4	NPTEL
26	Introduction to Probability and Data	Coursera *	5 weeks	1	Duke University
27	Ethics	NPTEL *	12 weeks	4	
28	Science, Technology and Society	NPTEL	12 weeks	4	
29	Creating Innovation	Coursera	6 weeks	2	Macquarie University
30	Ethical Leadership Through Giving Voice to Values	Coursera *	4 weeks	2	University of Virginia
31	Creativity, Innovation, and Change	Coursera *	6 weeks	2	Pennsylvania State University
32	Interpersonal Communication for Engineering Leaders	Coursera	4 weeks	1	Rice University

33	Learn to Program: The Fundamentals	Coursera *	7 weeks	3	University of Toronto
34	Introduction to Mathematical Thinking	Coursera *	9 weeks	3	Stanford University
35	The Science of Everyday Thinking	edX	12 weeks	4	University of Queensland
36	A Life of Happiness and Fulfillment	Coursera	6 weeeks	2	Indian School of Business
37	Model Thinking	Coursera	12 weeks	4	University of Michigan
38	Introduction to Philosophy: God,	edX	12 weeks	4	MIT
	Knowledge, and Consciousness	Cuzi	12 Weeks	•	
39	Soft skills	NPTEL *	12 Weeks	4	IIT Roorkee
40	Developing Soft Skills and Personality	NPTEL *	8 weeks	3	IIT Kanpur
41	Indian Fiction in English	NPTEL	12 Weeks	4	IIT Madras
42	Development of Sociology in India	NPTEL	4 Weeks	1	IIT Kanpur
43	Intellectual Property	NPTEL	12 Weeks	4	IIT Madras
44	Essential Statistics for Data Analysis using Excel	EdX *	Self Paced	3	Microsoft
45	Ethics and Law in Data and Analytics	edX	Self Paced	4	Microsoft
46	Climate Change Mitigation in Developing Countries	Coursera *	6 weeks	3	University of Cape town
47	Web Design for Everybody (Basics of Web Development and Coding) Specialization	Coursera	15weeks	4	University of Michigan
48	Ecology: Ecosystem Dynamics and Conservation	Coursera	5 weeks	1	American Museum of Natural History, Howard Hughes Medical Institute
49	Environmental Studies: A Global Perspective	EdX *	Self Paced	4	Curtin University
50	Introduction to Computer Science and Programming Using Python	edX *	Self Paced	4	MIT, USA
51	Statistics and R	edX *	Self Paced	4	Harvard University
52	Introduction to Programming in C	Coursera *	4 weeks	4	Duke University
53	Java Programming: Solving Problems with Software	Coursera	4 weeks	4	Duke University
54	Grammar and Punctuation	Coursera	4 weeks	1	University of California
55	How to Write an Essay	Coursera *	5 weeks	1	University of California, Berkeley
56	Conversational English Skills	EdX *	10 weeks	3	Tsinghua University
57	Advanced Writing	Coursera *	4 weeks	1	University of California, Irvine
58	Speak English Professionally: In Person, Online & On the Phone	Coursera *	5 weeks	1	Georgia Institute of Technology
59	English for Science, Technology, Engineering, and Mathematics	Coursera	5 weeks	1	University of Pennsylvania
60	English Composition	edX	8 weeks	3	Arizona State University
61	Take Your English Communication Skills to the Next Level	Coursera *	4 weeks	1	Georgia Institute of Technology

Guidelines regarding Mandatory Induction Program for the new students

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Date: 06.12.2017

Maulana Abul Kalam Azad University of Technology, West Bengal Guidelines regarding Induction Programme for the new students

(As per Model Curriculum for 1st Year UG degrees courses in Engineering & Technology, November 2017)

To be followed from the 2018-19 academic session

Preamble: Engineering education has evolved globally in a continuous manner to address the twin needs of industry and society. It is now an accepted fact that the institutions imparting technical education should aspire to create manpower who will possess strong technical knowledge and skill, have leadership qualities and be a team player, capable of coming up with innovative solutions and be alive to societal and community concerns.

The aim of the Induction Programme is to acclimatize the students to the environment of their engineering institution, give them a flavour of the exciting new world of education that they are entering, provide them with mentoring schemes, and make them aware of their neighbourhood, society and people. This will allow them to evolve as well rounded individuals.

The following schedule is laid down by the University to implement the three week long Induction Programme:

Week 1	1 st Half	Day 1	Overall introduction of the new students to the				
,,, con 1	1 11411		Institution, its different Departments & Faculty				
			Members				
			Wellibers				
	2 nd Half	Day 1	(a) Assignment of faculty mentors to the new				
			students				
			(b) Assessment and allotment for mentoring by senior students preferably from the second year				
	2 hrs	Day 2, 3, 4, 5	Lectures by eminent personalities on different areas				
			such as (a) Introduction to Engineering (b) Various				
			topics of science and technology				
			(c) Innovation and entrepreneurship				
			(d) Creative and performing arts (e) Social issues				
			(a) crown and performing and (b) a countries				
	2 hrs.	Day 2, 3, 4, 5	Participation in Games, Yoga, Meditation etc.				
	2 hrs	Day 2, 3, 4, 5	Visit to the different Departments of the Institute				
W 1 0 (A11	21						
Week 2 (All	2hrs		Scheduled class lectures as per time table.				
Days)							
	2hrs		Students to be conducted through proficiency modules				
			to be prepared by respective Colleges for ascertaining				
			English skills & Computer knowledge of the students				

			and to prepare a report on the same
	2hrs		Participation in Games, Sports, Yoga, Creative arts etc.
Week 3	2hrs		Scheduled class lectures as per time table
		Day 1	Visits to neighbourhood locations
		Day 2	Visits to natural spots in adjoining areas to understand the effect of nature on society
		Day 3	Visits to Science Museum / laboratories
		Day 4	
		Day 5	Visits to NGOs

Any other activity, as deemed fit by the Director/Principal of the affiliated Colleges, may be proposed and discussed with the Academic Coordinator of the University, by sending email to the following address: academics.makaut@gmail.com.

Note: 1) If necessary, networking may be established with NGOs to facilitate the different components and aspects of the Induction Programme.

Mandatory Additional Requirement for earning B. Tech Degree

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Maulana Abul Kalam Azad University of Technology, West Bengal BF-142, Sector-I, Saltlake

Notice

Mandatory Additional Requirement for earning B.Tech Degree

Addressing the needs of the industry and the society: Globally, engineering education systems have continuously evolved, in order to address the needs of the industry and the society. It is becoming imperative that every University should create opportunities for the students to inculcate attributes, which are not restricted only to engineering knowledge and acumen. Industry needs professionals who can work successfully in teams, who have leadership qualities, who are alive to social and community needs and who can bring innovation and creativity to their work and who are also digitally proficient. Hence, in order to prepare its students to match these multiple requirements, MAKAUT, WB has created a unique mechanism of awarding 100 Activity Points over and above the academic grades. It is planned that the students at MAKAUT, WB will be able to reap benefits from these activities at their own pace and comfort. It is expected that by the time MAKAUT, WB's students reach their Final Year, they would have developed themselves so well both through their studies in the respective technological field and through their active participation in the co-curricular and extra-curricular activities as also through SAWYAM based learning activities that they would be well-prepared for contributing to building the India and the world of their dreams.

The additional requirement applies to: Every student, who is admitted to the 4 years B.Tech program from the academic year 2018-19 onwards, is required to earn minimum 100 Activity Points in addition to the required academic grades, for getting MAKAUT,WB's B.Tech degree. Similarly, it is mandatory to earn 75 Activity Points, in addition to the academic grades, for getting B.Tech degree by a student (Lateral Entry) who is admitted to the B.Tech program from the academic year 2018-19 onwards. (*Please see Table 1 for details.*) [Lateral Entry students will have a multiplying factor of 1.33 to bring uniformity in score].

Level of Entry in B.Tech Course	Total duration for earning Points	Minimum Points
1st Year from the academic year 2018-19 onwards	1 st to 4 th Year	100
2 nd Year from the academic year 2018-19 onwards	2 nd to 4 th Year	75
(Lateral Entry)		

Table – I

For existing Students (except students in the 4th year): Every student, who is admitted to the 4 years B.Tech program prior to the academic year 2018-19, is required to earn minimum number of Activity Points as per Table II in addition to the required academic grades, for getting MAKAUT,WB's B.Tech degree.

Current Semester	Total Points to be earned During the full course
2 nd	100
4 th	75
6 th	50

Table -II

These points must be earned on the basis of active participation in co-curricular and extracurricular activities spanning through all the semesters of study. Every student may choose, as per his/her liking, activities in order to achieve the mandatory points (as per Table-III, depending on his/her entry level), before becoming eligible for award of the Degree. These activities can be spread over the years, as per convenience of the student.

Notes:

- Current 4th year students who are going to sit for Final Semester examination in May-June, 2018 are outside the preview of this Mandatory Additional Requirement
- Every student shall participate in the co-curricular and extra-curricular activities and produce documentary proof to the designated Faculty Members appointed by the Head of Department / Principal / Director in the respective college. Thereby the student should earn the required Points before *her* she appears for his/ her Final Examinations.
- A student's result of his/her Final Examinations will be withheld until he/she completes the minimum Activity Points by the end of his/her B.Tech Program.
- In every semester, every student is required to prepare a file containing documentary proofs of activities, done by him / her. This file will be duly verified and Activity Points will be assigned by the teachers as appointed above, at the end of every semester.
- The college will form a 3 members committee and finalize the Activity Points for each student before entering them into the Online Point Entry System (at the URL, as specified by the COE of the University).
- Every student has to earn at least 100 activity points. The points students has earned will be reflected in the student's marksheet.
- Activity points earned by Lateral Entry students will be multiplied by 1.33.

Table III provides a List of Activity Heads and Sub-Activity Heads along with their capping of the Activity Points that can be earned by the students during the entire B.Tech duration.

Sl. No.	Name of the Activity	Points	Maximum Points Allowed
1.	MOOCS (SWAYAM/NPTEL/Spoken Tutorial) (per course)	20	40
2.	Tech Fest/Teachers Day/Freshers Welcome		
	Organizer	5	10
	Participants	3	6
5.	Rural Reporting	5	10
6.	Tree Plantation (per tree)	1	10
7.	Participation in Relief Camps	20	40
8.	Participation in Debate/Group Discussion/ Tech quiz	10	20
9.	Publication of Wall magazine in institutional level (magazine/article/internet)	10	20
10.	Publication in News Paper, Magazine & Blogs	10	20
11.	Research Publication (per publication)	15	30
12.	Innovative Projects (other than course curriculum)	30	60
13.	Blood donation	8	16
	Blood donation camp Organization	10	20
15.	Participation in Sports/Games		
	College level	5	10
	University Level	10	20
	District Level	12	24
	State Level	15	30
	National/International Level	20	20
21.	Cultural Programme (Dance, Drama, Elocution, Music etc.)	10	20
22.	Member of Professional Society	10	20
23.	Student Chapter	10	20
24.	Relevant Industry Visit & Report	10	20
25.	Photography activities in different Club(Photography club, Cine Club, Gitisansad)	5	10
26.	Participation in Yoga Camp (Certificate to be submitted)	5	10
27.	Self-Entrepreneurship Programme	20	20
28.	Adventure Sports with Certification	10	20
29.	Training to under privileged/Physically challenged	15	30
30.	Community Service & Allied Activities	10	20

Suggestions from the College Principals will be considered to append in the above Table-III.

Sd/-

Registrar(Acting) MAKAUT,WB

Maulana Abul Kalam Azad University of Technology, West Bengal Record of Activities for Mandatory Additional Requirement

College Name (College Code):					Departmen	Department:						
Stude	nt Name:	Univ	University Roll No:				Registration No:					
Sl No	Activity	Points	Max. Points Allowed		_	_	Po	oints Earne	d	_		
51 110	Activity	Poi	M. Poir Allo	Sem1	Sem2	Sem3	Sem4	Sem5	Sem6	Sem7	Sem8	Total
1	MOOCS (SWAYAM/NPTEL/Spoken Tutorial) per course											
	For 12 weeks duration	20	40									
	For 8 weeks duration	16	1 40									
2	Tech Fest/Teachers Day/Freshers Welcome											
	Organizer	5	10									
	Participants	3	6									
3	Rural Reporting	5	10									
4	Tree Plantation and up keeping (per tree)	1	10									
5	Participation in Relief Camps	20	40									
6	Participation in Debate/Group Discussion/ Tech quiz	10	20									
7	Publication of Wall magazine in institutional level (magazine/article/internet)		•									
	Editor	10	20									
	Writer	6	12									
8	Publication in News Paper, Magazine & Blogs	10	20									
9	Research Publication (per publication)	15	30									
10	Innovative Projects (other than course curriculum)	30	60									
11	Blood donation	8	16									
11	Blood donation camp Organization	10	20									

Maulana Abul Kalam Azad University of Technology, West Bengal Record of Activities for Mandatory Additional Requirement

	Activity		x. s	Points Earned								
Sl No		Points	Max. Points Allowed	Sem1	Sem2	Sem3	Sem4	Sem5	Sem6	Sem7	Sem8	Total
12	Participation in Sports/Games				•	•	•	•		•		
	College level	5	10									
	University Level	10	20									
	District Level	12	24									
	State Level	15	30									
	National/International Level	20	20									
13	Cultural Programme (Dance, Drama, Elocution, Music etc.)	10	20									
14	Member of Professional Society	10	20									
15	Student Chapter	10	20									
16	Relevant Industry Visit & Report	10	20									
17	Photography activities in different Club(Photography club, Cine Club, Gitisansad)	5	10									
18	Participation in Yoga Camp (Certificate to be submitted)	5	10									
19	Self-Entrepreneurship Programme	20	20									
20	Adventure Sports with Certification	10	20									
21	Training to under privileged / Differently abled	15	30									
22	Community Service & Allied Activities	10	20									
	Total Point	s										
	Signature of Mentor											
	Signature of HOD	_										

*Please abide strictly to the Notes at the end of the Notice by Registrar, MAKAUT, WB regarding Mandatory Additional Requirement for earning B.Tech Degree

^{*} Annexure-I is to be retained in the Institute records with all documentary proofs of activities (to be verified by the University as and when required).

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

SEMESTER – III

Analog & Digital Electronics

Code: ESC-301 **Contact: 3L**

Name of the Course:	Analog & Digital Electronics						
Course Code: ESC-301	Semester: III	Semester: III					
Duration: 6 months	Maximum Marks: 100						
Teaching Scheme		Examination Scheme					
Theory: 3 hrs./week		Mid Semester exam: 15					
Tutorial: NIL		Assignment and Quiz: 10 marks					
		Attendance: 5 marks					
Practical: hrs./week		End Semester Exam: 70 Marks					
Credit Points:	3						
Objective:							
1 To acquire the ba	sic knowledge of differen	nt analog components and their applications					
1 *	To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.						
3 To prepare studer circuits	To prepare students to perform the analysis and design of various digital electronic						
Pre-Requisite:							
	Basic Electronics Parts I & II learned in the First year, semesters 1 & 2. Basic BJTs,.						
	Basic concept of the working of P-N diodes, Schottky diodes,						
1	Basic FETs and OPAMP as a basic circuit component. Concept of Feedback						

Unit	Content	Hrs/Unit	Marks/Unit
1	Different Classes of Amplifiers - (Class-A, B, AB and C - basic concepts, power, efficiency; Recapitulation of basic concepts of Feedback and Oscillation, Phase Shift, Wein Bridge oscillators	9	
	Astable & Monostable Multivibrators; Schimtt Trigger circuits, 555 Timer.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

2	Binary Number System & Boolean Algebra (recapitulation); BCD, ASCII, EBDIC, Gray codes and their conversions; Signed binary number representation with 1's and 2's complement methods, Binary arithmetic, Venn diagram, Boolean algebra (recapitulation); Representation in SOP and POS forms; Minimization of logic	11	
	expressions by algebraic method. Combinational circuits - Adder and Subtractor circuits (half & full adder & subtractor); Encoder, Decoder, Comparator, Multiplexer, DeMultiplexer and Parity Generator		
3	Sequential Circuits - Basic Flip-flop & Latch, Flip-flops -SR, JK, D, T and JK Master-slave Flip Flops, Registers (SISO, SIPO, PIPO, PISO) Ring counter, Johnson counter Basic concept of Synchronous and Asynchronous counters (detail design of circuits excluded), Design of Mod N Counter	10	
4.	A/D and D/A conversion techniques – Basic concepts (D/A :R-2-R only [2L] A/D: successive approximation [2L]) Logic families- TTL, ECL, MOS and CMOS - basic concepts. (2L)	6	

Text book and Reference books:

- 1. Microelectronics Engineering –Sedra & Smith-Oxford.
- 2. Analog Electronics, A.K. Maini, Khanna Publishing House (AICTE Recommended -2018)
- 3. Analog Electronics, L.K. Maheswari, Laxmi Publications (AICTE Recommended -2018)
- 4. Principles of Electronic Devices & circuits—B L Thereja & Sedha—S Chand
- 5. Digital Electronics Kharate Oxford
- 6. Digital Electronics Logic & Systems by J.Bigmell & R.Donovan; Cambridge Learning.
- 7. Digital Logic and State Machine Design (3rd Edition) D.J.Comer, OUP
- 8. Electronic Devices & Circuit Theory Boyelstad & Nashelsky PHI
- 9. Bell-Linear IC & OP AMP—Oxford
- 10. P.Raja- Digital Electronics- Scitech Publications
- 11. Morries Mano- Digital Logic Design- PHI
- 12. R.P.Jain—Modern Digital Electronics, 2/e ,McGraw Hill
- 13. H. Taub & D. Shilling, Digital Integrated Electronics- McGraw Hill.
- 14. D.RayChaudhuri- Digital Circuits-Vol-I & II, 2/e- Platinum Publishers
- 15. Tocci, Widmer, Moss-Digital Systems, 9/e-Pearson
- 16. J.Bignell & R.Donovan-Digital Electronics-5/e- Cenage Learning.
- 17. Leach & Malvino—Digital Principles & Application, 5/e, McGraw Hill
- 18. Floyed & Jain- Digital Fundamentals-Pearson.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

Course Outcomes:

On completion of the course students will be able to

ESC-301.1 Realize the basic operations of different analog components.

ESC-301.2 Realize basic gate operations and laws Boolean algebra.

ESC-301.3 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

Data Structure & Algorithm

Code: PCC-CS301 **Contacts: 3L**

Name	of the Course:	Data Structure &	Algorithm
	se Code: PCC- S)301	Semester: III	
Durat	ion: 6 months	Maximum Marks:	100
Teach	hing Scheme		Examination Scheme
Theor	ry: 3 hrs./week		Mid Semester exam: 15
Tutor	ial: NIL		Assignment and Quiz: 10 marks
			Attendance : 5 marks
Practi	Practical: hrs./week		End Semester Exam :70 Marks
Credit Points: 3		3	
Objec	ctive:		
1	To learn the basics of	f abstract data types	
2	To learn the principles of linear and nonlinear data structures.		
3	To build an application using sorting and searching		
Pre-R	Requisite:		
1	CS 201 (Basic Computation and Principles of C		
2	M101 & M201 (Mathematics), basics of set theory		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Basic Terminologies: Elementary Data		
1	Organizations, Data Structure Operations: insertion,	10	
	deletion, traversal etc.; Analysis of an Algorithm,		
	Asymptotic Notations, Time-Space trade		
	off. Searching: Linear Search and Binary Search		
	Technique sand their complexity analysis.		
	Stacks and Queues: ADT Stack and its operations:		
2	Algorithms and their complexity analysis, Applications	9	
	of Stacks: Expression Conversion and evaluation –		
	corresponding algorithms and complexity analysis.		
	ADT queue, Types of Queue: Simple Queue, Circular		
	Queue, Priority Queue; Operations on each types of		
	Queues: Algorithms		
	and their analysis.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular	10	
	Linked Lists: all operations their algorithms andthe complexity analysis.		
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis		
4.	Sorting and Hashing: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing. Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.	9	

Text book and Reference books:

- 1. "Data Structures and Program Design In C", 2/E by Robert L. Kruse, Bruce P. Leung.
- 2. "Data Structure & Algorithms Using C", 5th Ed., Khanna Publishing House (AICTE Recommended 2018)
- 3. "Fundamentals of Data Structures of C" by Ellis Horowitz, Sartaj Sahni, Susan Andersonfreed.
- 4. "Data Structures in C" by Aaron M. Tenenbaum.
- 5. "Data Structures" by S. Lipschutz.
- 6. "Data Structures Using C" by Reema Thareja.
- 7. "Data Structure Using C", 2/e by A.K. Rath, A. K. Jagadev.
- 8. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
- 9. "Data Structures through C" by Yashwant Kanetkar, BPB Publications.
- 10. "Expert Data Structures with C++" by R.B Patel, Khanna Publishing House

Course Outcomes:

On completion of the course students will be able to

PCC-CS301.1 Differentiate how the choices of data structure & algorithm methods impact the performance of program.

PCC-CS301.2 Solve problems based upon different data structure & also write programs.

PCC-CS301.3 Identify appropriate data structure & algorithmic methods in solving problem.

PCC-CS301.4 Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

PCC-CS301.5 Compare and contrast the benefits of dynamic and static data structures implementations.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

Computer Organization Code: PCC- CS302

Contacts: 3L

Name of the Course:	Computer Org	ganization
Course Code: PCC- DS301	Semester: III	
Duration:6 months	Maximum Mar	ks: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: hrs./week		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Basic organization of the stored program computer and		
1	operation sequence for execution of a program. Role of	8	
	operating systems and compiler/assembler. Fetch,		
	decode and execute cycle, Concept of operator,		
	operand, registers and storage, Instruction format.		
	Instruction sets and addressing modes. [7L]		
	Commonly used number systems. Fixed and floating		
	point representation of numbers.[1L]		
	Overflow and underflow. Design of adders - ripple	0	
2	carry and carry look ahead principles. [3L]	8	
	Design of ALU. [1L]		
	Fixed point multiplication -Booth's algorithm. [1L]		
	Fixed point division - Restoring and non-restoring		
	algorithms. [2L]		
	Floating point - IEEE 754 standard. [1L]		
	Memory unit design with special emphasis on	1.0	
3	implementation of CPU-memory interfacing. [2L]	10	
	Memory organization, static and dynamic memory,		
	memory hierarchy, associative memory. [3L] Cache		
	memory, Virtual memory. Data path design		
	for read/write access. [5L]		
,	Design of control unit - hardwired and	10	
4.	microprogrammed control. [3L] Introduction	10	
	to instruction pipelining. [2L]		
	Introduction to RISC architectures. RISC vs CISC		
	architectures. [2L]		
	I/O operations - Concept of handshaking, Polled		
	I/O, interrupt and DMA. [3L]		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

Text book and Reference books:

- 1. Mano, M.M., "Computer System Architecture", PHI.
- 2. Behrooz Parhami "Computer Architecture", Oxford University Press
- 3. Hayes J. P., "Computer Architecture & Organisation", McGraw Hill,
- 4. Hamacher, "Computer Organisation", McGraw Hill,
- 5. N. senthil Kumar, M. Saravanan, S. Jeevananthan, "Microprocessors and Microcontrollers" OUP
- 6. Chaudhuri P. Pal, "Computer Organisation & Design", PHI,
- 7. P N Basu- "Computer Organization & Architecture", Vikas Pub
- 8. Rajaraman "Computer Organization & Architecture", PHI
- 9. B.Ram "Computer Organization & Architecture", Newage Publications

Course Outcomes:

On completion of the course students will be able to

PCC-CS302.1 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.

PCC-CS302.2 Understand basic structure of different combinational circuits-multiplexer, decoder, encoder etc.

PCC-CS302.3 Perform different operations with sequential circuits.

PCC-CS302.4 Understand memory and I/O operations.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

Economics for Engineers (Humanities-II)

Code: HSMC-301 Contacts: 3L

Name of the Course:	Economics for 1	Engineers (Humanities-II)
Course Code: HSMC-301	Semester: III	
Duration: 6 months	Maximum Mark	s: 100
Teaching Scheme	•	Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit Content Hrs/Unit Marks/Unit Decisions Economic Making Overview, 9 Problems, Role, Decision making process. 1 2. Engineering Costs & Estimation – Fixed, Variable, Marginal & Average Costs, Sunk Costs, Opportunity Costs, Recurring And Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs; Types Of Estimate, Estimating Models - Per-Unit Model, Segmenting Model, Cost Indexes, Power-Sizing Model, Improvement & Learning Curve, Benefits. 3. Cash Flow, Interest and Equivalence: Cash Flow – 9 2 Diagrams, Categories & Computation, Time Value of Money, Debt repayment, Nominal& Effective Interest. 4. Cash Flow & Rate of Return Analysis – Calculations, Treatment of Salvage Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing an Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity and Breakeven Analysis. Economic Analysis In The Public Sector -Quantifying And Valuing Benefits & drawbacks.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

	(Applicable from the academic session 202		
	5. Inflation and Price Change – Definition, Effects,		
3	Causes, Price Change with Indexes, Types of Index,	9	
	Composite vs Commodity		
	Indexes, Use of Price Indexes In Engineering Economic		
	Analysis, Cash Flows that inflate at different Rates.		
	6. Present Worth Analysis: End-Of-Year Convention,		
	Viewpoint Of Economic Analysis Studies, Borrowed		
	Money Viewpoint, Effect		
	Of Inflation & Deflation, Taxes, Economic Criteria,		
	Applying Present Worth Techniques, Multiple		
	Alternatives.		
	7. Uncertainty In Future Events - Estimates and Their		
	Use in Economic Analysis, Range Of Estimates,		
	Probability, Joint Probability		
	Distributions, Expected Value, Economic Decision		
	Trees, Risk, Risk vs Return, Simulation, Real Options.		
	8. Depreciation - Basic Aspects, Deterioration &		
4		9	
	Property, Depreciation Calculation Fundamentals,		
	Depreciation And Capital Allowance Methods, Straight-		
	Line Depreciation Declining Balance Depreciation,		
	Common Elements Of Tax Regulations For		
	Depreciation And Capital Allowances.		
	9. Replacement Analysis - Replacement Analysis		
	Decision Map, Minimum Cost Life of a New Asset,		
	Marginal Cost, Minimum Cost Life Problems.		
1			
	10. Accounting – Function, Balance Sheet, Income		
	10. Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost		
	10. Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost		

Text book and Reference books:

- 1. James L.Riggs, David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e , Tata McGraw-Hill
- 2. Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP
- 3. John A. White, Kenneth E. Case, David B. Pratt : Principle of Engineering Economic Analysis, John Wiley
- 4. Sullivan and Wicks: Engineering Economy, Pearson
- 5. R.Paneer Seelvan: Engineering Economics, PHI
- 6. Michael R Lindeburg: Engineering Economics Analysis, Professional Pub
- 7. Premvir Kapoor, Sociology & Economics for Engineers, Khanna Publishing House (AICTE Recommended Textbook 2018)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

BSCAIML 301 Linear Algebra (BS) 2L:0T:0P 2 credits

Module I 10L

Real Matrices, Complex Matrices, Hermitian and skew Hermitian Matrices, Unitary Matrices, Elementary row and column operation, Echelon Matrix.

System of linear equation: LU Decomposition Method

Matrix of a Linear mapping, Null Space, Range Space, Injectivity and Surjectivity, composition of linear Mapping, Invertible linear maps and Linear operators, Invertable operators.

Module II 10L

Inner product space: Definition and properties of inner product space, orthogonality, Cauchy Schwarz inequality, Norm and Orthogonal Basis and Gramm-Schmidt orthonormalisation.

Schur's Theorem, Linear functional, Riesz representation Theorem, Orthogonal orthogonal complement or dual subspace

Singular value and singular vectors singular value decomposition.

Text book and Reference books:

- 1. Advanced Engineering Mathematics, E Kreyszig, Wiley-India
- 2. Higher Algebra, S. K. Mapa, Levant Books.
- 3. Advanced Higher Algebra, Chakravorty and Ghosh, U N Dhar Pvt. Ltd.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

PRACTICAL SYLLABUS Semester III

Analog & Digital Electronics Lab

Code: ESC-391 Contacts: 4P

Name of the Course:	Analog & Digital Electronics Lab
Course Code: ESC-391	Semester: III
Duration: 6 months	Maximum Marks: 100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement: 60
Practical: 4 hrs./week	Distribution of marks: 40
Credit Points:	2

Labora	Laboratory Experiments:				
Analog	Analog Electronics				
1	Design a Class A amplifier				
2	Design a Phase-Shift Oscillator				
3	Design of a Schmitt Trigger using 555 timer				
Digital	Electronics				
4	Design a Full Adder using basic gates and verify its output / Design a Full				
	Subtractor circuit using basic gates and verify its output.				
5	Construction of simple Decoder & Multiplexer circuits using logic gates.				
6	Realization of RS / JK / D flip flops using logic gates				
7	Design of Shift Register using J-K / D Flip Flop				
8	Realization of Synchronous Up/Down counter				
9	Design of MOD- N Counter				
10	Study of DAC				

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning (Applicable from the academic session 2020-2021)

Data Structure & Algorithm Lab

Code: PCC-CS391 **Contacts: 4P**

Name of the Course:	Data Structure & Algorithm Lab
Course Code: PCC-CS(DS)391	Semester: III
Duration: 6 months	Maximum Marks: 100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement: 60
Practical: 4 hrs./week	Distribution of marks: 40
Credit Points:	2

La	Laboratory Experiments:			
Lir	near Data Structure			
1	Implementation of array operations			
2	Stacks and Queues: adding, deleting elements Circular Queue: Adding & deleting			
	elements			
3	Merging Problem: Evaluation of expressions operations on Multiple stacks & queues:			
4	Implementation of linked lists: inserting, deleting, inverting a linked list.			
	Implementation of stacks & queues using linked lists			
5	Polynomial addition, Polynomial multiplication			
No	n Linear Data Structure			
6	Recursive and Non-recursive traversal of Trees			
7	Threaded binary tree traversal. AVL tree implementation			
8	Application of Trees. Application of sorting and searching algorithms			
9	Hash tables implementation: searching, inserting and deleting, searching & sorting			
	techniques.			

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

Computer Organization Lab

Code: PCC- CS392 Contacts: 4P

Name of the Course:	Computer Organization Lab	
Course Code: PCC-CS(DS)392	Semester: III	
Duration:6 months	Maximum Marks: 100	
Teaching Scheme:		
Theory: hrs./week	Continuous Internal Assessment	
Tutorial: NIL	External Assesement: 60	
Practical: 4 hrs./week	Distribution of marks: 40	
Credit Points:	2	

La	Laboratory Experiments:		
1	Familiarity with IC-chips: a) Multiplexer, b) Decoder, c) Encoder b) Comparator		
	Truth Table verification and clarification from Data-book.		
2	Design an Adder/Subtractor composite unit.		
3	Design a BCD adder.		
4	Design of a 'Carry-Look-Ahead' Adder circuit.		
5	Use a multiplexer unit to design a composite ALU		
6	Use ALU chip for multibit arithmetic operation		
7	Implement read write operation using RAM IC		
8	8. (a) & (b) Cascade two RAM ICs for vertical and horizontal expansion.		

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning (Applicable from the academic session 2020-2021)

IT Workshop (Sci Lab/MATLAB/Python/R)

Code: PCC CS(AIML)393

Contacts: 4P

Name of the Course:	IT Workshop (Sci Lab/MATLAB/Python/R)
Course Code: PCC-CS393	Semester: III
Duration: 6 months	Maximum Marks: 100
Teaching Scheme:	
Theory: NIL	Continuous Internal Assessment
Tutorial: NIL	External Assessment: 60
Practical: 4 hrs./week	Distribution of marks: 40
Credit Points: 2	

Practical Syllabus

Programming in R

- 1. Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc. Operators in R.
- 2. R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, RVector Function, Recursive Function in R.
- 3. R Packages (Install and Use), Input/Output Features in R, Reading or Writing in File. Data Manipulation in R.Rearranging data, Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree
- 4. Graphics, Creating Graphs, The Workhorse of R Base Graphics, Graphical Functions Customizing Graphs, Saving Graphs to Files, Pie chart, Bar Chart, Histogram.

Programming in

Matlab Introduction

Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB

Basics

Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables

Programming-I

Vector, Matrix, Array Addressing, Built-in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept

Programming-II

Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file Conditional statements and Loop

Relational and Logical Operators, If-else statements, Switch-case statements, Forloop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database 2D Plotting

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence & Machine Learning

(Applicable from the academic session 2020-2021)

In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface

3D Plotting

Use of meshgrid function, Mesh plot, Surface plot, Plots with special graphics Programming with Python

Introduction

History, Features, Setting up path, Working with Python, Basic Syntax, Variable and

Data Types, Operator

Conditional Statements

If, If- else, Nested if-else, Looping, For, While, Nested

loops Control Statements

Break, Continue,

Pass String

Manipulation

Accessing Strings, Basic Operations, String slices, Function and

Methods Lists

Introduction, Accessing list, Operations, Working with lists, Function and

Methods Tuple

Introduction, Accessing tuples, Operations, Working, Functions and

Methods Dictionaries

Introduction, Accessing values in dictionaries, Working with dictionaries,

Properties Functions

Defining a function, Calling a function, Types of functions, Function

Arguments, Anonymous functions, Global and local variables

Modules

Importing module, Math module, Random module, Packages, Composition, Input-Output Printing on screen, Reading data from keyboard, Opening and closing file,

Reading and writing files, Functions

Exception Handling

Exception, Exception Handling, Except clause, Try? finally clause, User Defined Exceptions.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

$\boldsymbol{SEMESTER-IV}$

Discrete Mathematics Code: PCC-CS401 Contacts: 3L

Name of the Course:	Discrete Mathematics	
Course Code: PCC-CS401	Semester: IV	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial:		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit
	Sets, Relation and Function: Operations and Laws of Sets,	
1	Cartesian Products, Binary Relation, Partial Ordering Relation,	8
	Equivalence Relation, Image of a Set, Sum and Product of	
	Functions, Bijective functions, Inverse and Composite Function,	
	Size of a Set, Finite and infinite Sets, Countable and uncountable	
	Sets, Cantor's diagonal argument and The Power Set theorem,	
	Schroeder-Bernstein theorem.	
	Principles of Mathematical Induction: The Well- Ordering	
	Principle, Recursive definition, The Division algorithm: Prime	
	Numbers, The Greatest	
	Common Divisor: Euclidean Algorithm, The Fundamental	
	Theorem of Arithmetic.	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination	5
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proofby Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.	8
4.	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form	7
5	Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Bi- connected component and Articulation Points, Shortest distances.	8

Text book and Reference books:

- 1. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation
- 2. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI
- 3. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning
- 4. Gary Chartrand and Ping Zhang Introduction to Graph Theory, TMH
- 5. J.K. Sharma, Discrete Mathematics, Macmillan
- 6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.
- 7. S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.
- 8. Douglas B. West, Introduction to graph Theory, PHI
- 9. C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.
- 10. R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures,

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

World Scientific, 1999.

- 11. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.
- 12. N. Deo, Graph Theory, Prentice Hall of India, 1974.
- 13. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.
- 14. J. P. Tremblay and R. P. Manohar, Discrete Mathematics with Applications to Computer Science, Tata McGraw-Hill, 1997.
- 15. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation
- 16. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI
- 17. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning
- 18. Gary Chartrand and Ping Zhang Introduction to Graph Theory, TMH
- 19. S.B. Singh, Discrete Structures Khanna Publishing House (AICTE Recommended Textbook 2018)
- 20. S.B. Singh, Combinatorics and Graph Theory, Khanna Publishing House (AICTE Recommended Textbook 2018)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Design and Analysis of Algorithms

Code: PCC-CS404 Contacts: 3L

Name of the Course:	Design and Analysis of Algorithms	
Course Code: PCC-CS404	Semester: IV	
Duration: 6 months	Maximum Max	rks:100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: hrs./week		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit
1	Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem	8
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch and- Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics—characteristics and their application domains.	8
3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.	6
4.	Tractable and Intractable Problems: Computability of Algorithms, Computability classes – P,NP, NP- complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.	10
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	4

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Text books/ reference books:

- 1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Fundamentals of Algorithms E. Horowitz et al.
- 4. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.
- 5. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- 6. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA
- 7. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House (AICTE Recommended Textbook 2018)
- 8. Algorithms Design and Analysis, Udit Agarwal, Dhanpat Rai

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Biology Code: BSC 401 Contacts: 2L

Name of the Course:	Biology	
Course Code: BSC-401	Semester: IV	
Duration: 6 months	Maximum Marks:100)
Teaching Scheme		Examination Scheme
Theory: 2hrs./week		Mid Semester exam: 15
Tutorial:		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	2	

Unit	Content	Hrs/Unit
1	To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.	2
2	The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure-prokaryotes or eucaryotes. (c)	3

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	energy and Carbon utilisation -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricoteliec, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus	
3	To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.	4
4.	Biomolecules: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids.	4
5	Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. Information Transfer: The molecular basis of coding and	4
0	decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and	4
	recombination.	

7

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

7	Macromolecular analysis: How to analyse biological processes at the reductionist level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5
8	Metabolism: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keqand its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2+ H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge	4
9	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3

Text books/ reference books:

- 1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd
- 2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H. John Wiley and Sons
- 3. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company
- 4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
- 5. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Environmental Sciences

Code: MC-401 Contacts: 2L

Name of the Course:	Environmental Sciences	
Course Code: MC-401	Semester: IV	
Duration:6 months	Maximum Marks:100	
Teaching Scheme		Examination Scheme
Theory:2hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points:	2	

Unit	Content	Hrs/Unit
1	Basic ideas of environment, basic concepts, man, society & environment, their interrelationship (1L)	6
	Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. (2L)	
	Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function. (1L)	
	Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering. (2L)	

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

2	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem-components types and function. (1L)	6
	Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.(2L)	
	Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. (1L)	
	Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.(2L)	
3	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. (1L)	11
	Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems.(1L)	
	Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L)	
	Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L)	
	Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L)	
	Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L)	
	Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

4.	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. (2L)	9
	River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. (2L)	
	Lake: Eutrophication [Definition, source and effect]. (1L)	
	Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L)	
	Standard and control: Waste water standard [BOD, COD, Oil, Grease],	
	Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L)	
	Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)	
5	Lithosphere; Internal structure of earth, rock and soil (1L) Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).(2L)	3
6	Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] (1L) Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L10 (18hr Index), n Ld. Noise pollution control. (1L)	3
7	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/protocol. (2L)	

Text books/ reference books:

- 1. M.P. Poonia & S.C. Sharma, Environmental Studies, Khanna Publishing House (AICTE Recommended Textbook 2018)
- 2. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of India Pvt. Ltd.,1991.
- 3. De, A. K., "Environmental Chemistry", New Age International

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Design & Analysis Algorithm Lab

Code: PCC-CS494

Contact: 4P

Name of the Course:	Design & Analysis Algorithm Lab
Course Code: PCC-CS494	Semester: IV
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement: 60
Practical: 4 hrs./week	Distribution of marks: 40
Credit Points:	2

Laborato	ory Experiments:
	nd Conquer:
1	Implement Binary Search using Divide and Conquer approach
	Implement Merge Sort using Divide and Conquer approach
2	Implement Quick Sort using Divide and Conquer approach
	Find Maximum and Minimum element from a array of integer using Divide
	and Conquer approach
3	Find the minimum number of scalar multiplication needed for chain of
	matrix
4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm)
	Implement Traveling Salesman Problem
5	Implement Single Source shortest Path for a graph (Dijkstra, Bellman Ford Algorithm
Brunch (and Bound:
6	Implement 15 Puzzle Problem
Backtrac	-
_	
7	Implement 8 Queen problem
8	Graph Coloring Problem
C 1	Hamiltonian Problem
Greedy r	
9	Knapsack Problem
	Job sequencing with deadlines
10	Minimum Cost Spanning Tree by Prim's Algorithm
	Minimum Cost Spanning Tree by Kruskal's Algorithm
	raversal Algorithm:
11	Implement Breadth First Search (BFS)
]	Implement Depth First Search (DFS)

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Artificial Intelligence Code: PCCAIML 401

Contacts: 3L

Name of the Course:	Artificial Intelligence	
Course Code: PCCAIML 401	Semester: IV	
Duration: 6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points:	3	

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction [2]	6	
1	Overview of Artificial intelligence- Problems of AI, AI technique, Tic		
	- Tac - Toe problem.		
	Intelligent Agents [2]		
	Agents & environment, nature of environment, structure of agents,		
	goal based agents, utility based agents, learning agents.		
	Problem Solving [2]		
	Problems, Problem Space & search: Defining the problem as state		
	space search, production system, problem characteristics,		
	issues in the design of search programs.		
2.	Search techniques [5]	13	
	Solving problems by searching :problem solving agents, searching for		
	solutions; uniform search strategies: breadth first		
	search, depth first search, depth limited search,		
	bidirectional search, comparing uniform search strategies.		
	Heuristic search strategies [5]		
	Greedy best-first search, A* search, memory bounded heuristic search:		
	local search algorithms & optimization problems:		
	Hill climbing search, simulated annealing search, local beam search,		
	genetic algorithms; constraint satisfaction problems, local search for constraint satisfaction problems.		
	Adversarial search [3]		
	Games, optimal decisions & strategies in games, the minimax search		
	procedure, alpha-beta pruning, additional refinements,		
	iterative deepening.		
3	Knowledge & reasoning [3]	3	
	Knowledge representation issues, representation & mapping,		
	approaches to knowledge representation, issues in knowledge		
	representation.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

4	Using predicate logic [2]	6	
	Representing simple fact in logic, representing instant & ISA		
	relationship, computable functions & predicates, resolution,		
	natural deduction.		
	Probabilistic reasoning [4]		
	Representing knowledge in an uncertain domain, the semantics of		
	Bayesian networks, Dempster-Shafer theory, Fuzzy sets &		
	fuzzy logics.		
5	Natural Language processing [2]	6	
	Introduction, Syntactic processing, semantic analysis, discourse &		
	pragmatic processing.		
	Learning [2]		
	Forms of learning, inductive learning, learning decision trees,		
	explanation based learning, learning using relevance		
	information, neural net learning & genetic learning.		
	Expert Systems [2]		
	Representing and using domain knowledge, expert system shells,		
	knowledge acquisition.		

Text book and Reference books:

- 1. Artificial Intelligence, Ritch & Knight, TMH
- 2. Artificial Intelligence A Modern Approach, Stuart Russel Peter Norvig Pearson
- 3. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI
- 4. Poole, Computational Intelligence, OUP
- 5. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 6. Expert Systems, Giarranto, VIKAS
- 7. M.C. Trivedi, Artificial Intelligence, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

OPTIMIZATION TECHNIQUES

Code: PCCAIML 402

Contacts: 3L

Name of the Course:		OPTIMIZATIO	ON TECHNIQU	E	
Course Code:PCCAIML402		Semester: IV			
Durat	ion: 6 months	Maximum Marks	s: 100		
Teacl	hing Scheme		Examination S	Scheme	
Theo	ry:3 hrs./week		Mid Semester e	exam: 15	
	ial: NIL		Assignment and Quiz: 10 marks		
			Attendance: 5 r		
Practi	ical: NIL		End Semester E	Exam: 70 Marks	
Credi	t Points:	3			
Cours	se Objectives				
	Matlab to implement i				
	arn efficient computation				
	t engineering minima/r		nto optimization		
Unit		Content		Hrs/Unit	Marks/Unit
1	optimization problem	timization, State	ement of an	2	
2	problems Classical Optimization optimization, Constrat multivariable optimization	ined and unconstra	ined	5	
3	Linear Programming programming problet linear programmin Stochastic linear prog	g: Standard form m, Simplex meth g, Quadratic	od, Duality in programming,	6	
4	Nonlinear Program Interpolation method Relevant applications	s, Direct and inc	· 1	4	
5	Geometric Program constrained geome Geometric programmi	tric programmii		5	
6	Integer Programming: Integer linear programming, Integer nonlinear programming, Relevant applications				
7	Game Theory: Introd Theory, Two Person, Dominance theory,	· ·		2	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

8	Genetic Algorithms: Introduction, Representation	2	
	methods, Selection methods, Operators, Replacement		
	methods, Relevant applications		

Text book and Reference books:

- 1. Rao, S. S., & Rao, S. S., Engineering optimization: theory and practice. John Wiley & Sons.
- 2. Hadley, G., Linear programming, Narosa Publishing house.
- 3. Taha, H. A., Operations research: An introduction. Pearson Education India.
- 4. Deb. K, Optimization for engineering design: Algorithms and examples. PHI Learning Pvt. Ltd.
- 5. Kumar, D. N., Multicriterion analysis in engineering and management. PHI Learning Pvt. Ltd.

Course Outcomes:

At the end of the course, students will be able to –

- 1. Relate key concepts and applications of various optimization techniques
- 2. Identify the appropriate optimization technique for the given problem
- 3. Formulate appropriate objective functions and constraints to solve real life optimization problem

Artificial Intelligence Lab Code: PCCAIML 491

Contacts: 4P

Name of the Course:	Artificial Intelligence & Functional Programming Lab	
Course Code: PCC-AIML491	Semester:IV	
Duration:6 months	Maximum Marks:100	
Teaching Scheme:		
Theory: hrs./week	Continuous Internal Assessment	
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	
COURSE OBJECTIVES		
1 C : 1: (: 1		

- 1. Gain a historical perspective of AI and its foundations.
- 2. Become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning.
- 3. Investigate applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
- 4. Experience AI development tools such as an 'AI language', expert system shell, and/or data mining tool
- 5. Experiment with a machine learning model for simulation and analysis

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Unit 1

Prolog Representation: Introduction, Logic-Based Representation, Prolog Syntax, Creating,

Changing, and Tracing a Prolog Computation, Lists and Recursion in Prolog.

Structured Representation and Inheritance Search: Abstract Data Types and Search, Using cut,

Control Search in prolog, Abstract Data Types (ADTs) in Prolog.

Unit 2

- 1. Write a program to implementation of DFS
- 2. Write a program to implementation of BFS

Unit 3

1. Write a Program to find the solution for traveling salesman Problem

Unit 4

- 1. Write a program to implement Simulated Annealing Algorithm
- 2. Write a program to find the solution for wampus world problem

Unit 5

1. Write a program to implement 8 puzzle problem

Unit 6

1. Write a program to implement Tower of Hanoi problem

Unit 7

1. Write a program to implement A* Algorithm

Unit 8

1. Write a program to implement Hill Climbing Algorithm

Unit 9

1. To Study JESS expert system

Unit 10

1. To Study RVD expert system

Unit 11

- 1. Write a Program to Perform Fibonacci Series
- 2. Write a Program to Check Sides of a Triangle

Unit 12

- 1. Write a Program to Perform Length of List
- 2. Write a Program to Perform Reverse in List.

Unit 13

- 1. Write a Prolog program to perform Arithmetic Mean.
- 2. Write a Program to Check Vowels or Not.

Unit 14

Machine Learning Algorithms in Prolog: Machine Learning: Version Space Search, Explanation

Based Learning in Prolog.

Programming in Lisp: S-Expressions, Syntax of LISP, Lists and Recursive Search, Variables,

Datatypes, High Order Functions, Logic Programming in LISP, Lisp-Shell.

Unit 15

Semantic Networks, Inheritance and Machine Learning: Sematic Nets, Inheritance, Object Oriented Lisp, Learning ID3 Algorithm, And Implementing ID3 Algorithm.

Java, Representation and Object-Oriented Programming, Problem Spaces and Search, a Logic-Based Reasoning System, an Expert System Shell

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Text books/ reference books:

Course Outcome

- 1) Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations.
- 2) Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
- 3) Demonstrate awareness and a fundamental understanding of various applications of AI

Techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.

- 4) Demonstrate proficiency developing applications in an 'AI language', expert system shell, or data mining tool.
- 5) Demonstrate proficiency in applying scientific method to models of machine learning.

PYTHON II / R Programming

Code: PCCAIML492

Contacts: 4P

Name of the Cou	rrse: R Pro	gramming	
Course	Semester: IV		
Code:PCCAIMI	.492		
Duration: 6 mon	ths Maximum Mark	s: 100	
Teaching Schen	ne	Examination Scheme	
Theory:		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: 4 hrs	./week	End Semester Exam: 70 Marks	
Credit Points: 2			
Objective:			
identify and use available R packages and associated Open Source software to meet given scientific objectives			
	design and write efficient programs using R (and similar high-level languages) to perform routine and specialized data manipulation/management and analysis tasks		
3 document	document analytical workflow using R, markdown languages, and version control		
document, share, and collaborate on code development using a suite of Open Source standards and tools			
Pre-Requisite:			
1 Computer	1 Computer Concepts and C Programming,		
2 Database	Management Systems		

Practical Syllabus

- 1. Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc. Operators in R.
- 2. R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, R Vector Function, Recursive Function in R.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

- 3. R Packages (Install and Use), Input /Output Features in R, Reading or Writing in File. Data Manipulation in R. Rearranging data, Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree
- 4. Graphics, Creating Graphs, The Workhorse of R Base Graphics, Graphical Functions Customizing Graphs, Saving Graphs to Files, Pie chart, Bar Chart, Histogram.

Text book and References.

- 1. Wickham, H. (2014) Advanced R. Chapman and Hall/CRC.
- 2. Hands-On Programming with R by Grolemund, O Reilly Publications
- 3. R for Everyone: Advanced Analytics and Graphics, 1e by Lander, Pearson Ltd.
- 4. R for Data Science Learning Dan Toomey December 2014 Packt Publishing Limited

Course Outcomes

- 1 Install and use R for simple programming tasks.
- 2 Extend the functionality of R by using add-on packages
- 3. Extract data from files and other sources and perform various data manipulation tasks on them.
- 4 Code statistical functions in R and apply data analytical techniques using R.

PYTHON II

Code: PCCAIML492

Contacts: 4P

Name of the Cour	rse: PYTHON II			
Course Code:PCCAIML	Semester: IV			
Duration: 6 mont	ns Maximum Mark	s: 100		
Teaching Schem	e	Examination Scheme		
Theory: hrs./weel		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical:4 hrs./week End Semester Exam: 70 Marks				
Credit Points:	2	2		
Objective:				
1 To acquire	programming skills in core	Python		
2 To acquire	Object Oriented Skills in Py	/thon		
3 To develop	To develop the skill of designing Graphical user Interfaces in Python			
4 To develop	To develop the ability to write database applications in Python			
Pre-Requisite:				
1 Computer	Concepts and C Programmi	ng,		
2 Database N	Ianagement Systems			

Practical Syllabus

Programming with Python-II

- 1. Programs to read and write files.
- 2. Programs to perform exploratory data analysis, variance, standard deviation, summarization, distribution, statistical inference.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

- 3. Plotting the various distribution for data set.
- 4. Write a program for K-mean clustering.
- 5. Program to demonstrate exception handling.
- 6. Program to demonstrate the use of regular expressions.
- 7. Program to show draw shapes & GUI controls.
- 8. Program to create server-client and exchange basic information.
- 9. Program to send email & read contents of URL.
- 10. Python with MySQL.
- 11. Python using linear regression, multiple regression and polynomial regression.
- 12. Python with MongoDB
- 13.

Text book and Reference books:

Michael Urban and Joel Murach, Python Programming, Shroff/Murach, 2016

Mark Lutz, Programming Python, O'Reilly, 4th Edition, 2010

Course Outcomes

- 1. Explain basic principles of Python programming language
- 2. Implement object oriented concepts
- 3. Implement database and GUI applications.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

SEMESTER -V

Name of	the Course: B. Tech in Al &	ML	
Subject: I	Probability & Statistics		
Course Co	ode: PCCAIML 501	Semester: V	
Teaching	Scheme	Maximum Marks: 100	
Theory: 3	hrs./week	Examination Scheme	
Tutorial:		End Semester Exam: 70	
Practical:	0	Attendance: 5	
Credit:3		Continuous Assessment: 25	
Aim:			
SI. No.			
1.	1. The aim of this course is to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling various problems in the discipline.		
2.	The objective of this course is to familiarize the students with statistical techniques.		
Objective: Throughout the course, students will be expected to demonstrate their understanding of probability & statistics by being able to learn each of the following			
Sl. No.			
1.	The ideas of probability and random variables and various discrete and continuous		
	probability distributions ar	nd their properties.	
2.	The basic ideas of statistics	s including measures of central tendency, correlation and	
	regression.		
3.	The statistical methods of studying data samples.		
Pre-Requ	isite:		
Sl. No.			
1.	Knowledge of basic algebr	ra, calculus.	
2.	Ability to learn and solve r	mathematical model.	
	1		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Contents		Hrs./we ek	Contents	
Chapter	Name of the Topic	Hours	Marks	
01	Definition of Partial Differential Equations, First order partial differential equations, solutions of first order linear PDEs; Solution to homogenous and nonhomogeneous linear partial differential equations of second order by complimentary function and particular integral method. Second-order linear equations and their classification, Initial and boundary conditions, D'Alembert's solution of the wave equation; Duhamel's principle for one dimensional wave equation. Heat diffusion and vibration problems, Separation of variables method to simple problems in Cartesian coordinates. The Laplacian in plane, cylindrical and spherical polar coordinates, solutions with Bessel functions and Legendre functions. One dimensional diffusion equation and its solution by separation of variables.	16	20	
02	Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality. Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities.Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.	16	25	
03	Basic Statistics, Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression — Rank correlation. Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, Tests for single mean, difference of means, and difference of standard deviations. Test for ratio of variances - Chisquare test for goodness of fit and independence of attributes.	16	25	
	Sub Total:	48	70	
	Internal Assessment Examination & Preparation of Semester Examination	4	30	
	Total:	52	100	

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Assignments:						
Based on the curriculum as covered by subject teacher.						
List of Books						
Text Books:						
Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher			
Erwin Kreyszig	Advanced Engineering Mathematics	9 th Edition	John Wiley & Sons			
N. G. Das	Statistical Methods	0070083274, 9780070083271	Tata Mc.Graw Hill			
Reference Books:						
P. G. Hoel, S. C. Port and C. J. Stone	Introduction to Probability Theory		Universal Book Stall			
W. Feller	An Introduction to Probability Theory and its Applications	3rd Ed.	Wiley			

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Operating Systems Code: PCC- CS502 Contacts: 3L

Name	of the Subject:	Operating Systems	i		
Course Code: PCC-CS502		Semester: V			
Durat	Duration: 6 months Maximum Marks:100				
Teach	Teaching Scheme Examination Scheme				
Theor	ry:3 hrs./week		Mid Semester exam: 15		
	ial: NIL		Assignment and Quiz: 10 m	arks	
			Attendance : 5 marks		
Practi	cal: hrs./week		End Semester Exam :70 Ma	rks	
Credit	t Points:	3			
Unit		Content		Hrs/U	Marks/
				nit	Unit
		oncept of Opera		3	
1		·	ems, Types of	_	
		s, OS Services, Syster			
	1	d, Monolithic, Micro			
		of Virtual Machine	•		
	UNIX and WINDOV	NS Operating System	•		
	Processes: Definit	tion, Process Relatio	onship. Different	10	
2		ss, Process State tra	• •		
_		3), Context switching	1131110113, 1100033		
		, Various states, Ber	nefits of threads.		
		Concept of multithrea			
	1	ing: Foundation			
		of Schedulers, Sch	_		
	1	roughput, Turnarour			
	-	Time; Scheduling			
		pre-emptive, FCFS,	_		
		heduling: Real Time			
	and EDF.		55544III.B. 11.141		
		munication: Critical:	Section, Race		
3.	Conditions, Mutua	l Exclusion, Hardwar	e Solution,	5	
	· ·	Peterson's Solution,	·		
	Consumer Proble	m, Semaphores, Ev	ent Counters,		
		ige Passing, Classica			
	Reader's & Writer	Problem, Dinning Ph	ilosopher		
	Problemetc.	3	•		
4.	Deadlocks: Defin	nition, Necessary	and sufficient	5	
		dlock, Deadlock Prev			
		r's algorithm, Deadlo			
	detection and Rec	_			

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

5.	Memory Management: Basic concept, Logical and	8	
	Physical address map, Memory allocation: Contiguous		
	Memory allocation— Fixed and variable partition—		
	Internal and External fragmentation and Compaction;		
	Paging: Principle of operation –Page allocation		
	Hardware support for paging, Protection and		
	sharing, Disadvantages of paging.		
	Virtual Memory: Basics of Virtual Memory – Hardware		
	and control structures – Locality of reference, Page		
	fault		
	, Working Set , Dirty page/Dirty bit – Demand paging,		
	Page Replacement algorithms:		
	Optimal, First in First Out (FIFO), Second Chance (SC),		
	Not recently used (NRU) and Least Recently used(LRU).		
6.	I/O Hardware: I/O devices, Device controllers, Direct	6	
	memory access Principles of I/O Software: Goals of		
	Interrupt handlers, Device drivers, Device independent		
	I/O software, Secondary-Storage Structure: Disk		
	structure, Disk scheduling algorithms		
	File Management: Concept of File, Access methods, File		
	types, File operation, Directory structure, File System		
	structure, Allocation methods (contiguous, linked,		
	indexed), Free-space management (bit vector, linked		
	list, grouping), directory implementation (linear list,		
	hash table), efficiency andperformance.		
	Disk Management: Disk structure, Disk scheduling -		
	FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk		
	formatting, Boot-block, Bad blocks		

Text book and Reference books:

- 1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia StudentEdition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 3. Operating System Concepts, Ekta Walia, Khanna PublishingHouse (AICTE Recommended Textbook 2018)
- 4. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 5. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 6. Design of the Unix Operating Systems, 8th Edition by MauriceBach, Prentice-Hall of India
- 7. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Operating System Lab Code: PCC- CS592 Contacts: 4P

Name of the Course:	Operating System Lab
Course Code: PCC- CS592	Semester: V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

1 1. Managing Unix/Linux Operating System [8P]:

Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems,

Logical Volumes, Network File systems, Backup schedules and

methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Password file management, Password

security, Shadow file, Groups and the group file, Shells, restricted shells, user-management commands, homes and

permissions, default files, profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users &user groups.

- 2. **Process [4P]**: starting new process, replacing a process image, duplicating aprocess image, waiting for a process,
- zombie process.
- 3. **Signal [4P]**: signal handling, sending signals, signal interface, signal sets.
- 4. **Semaphore** [6P]: programming with semaphores (use functions semctl, semget, semop, set semvalue, del semvalue, semaphore p, semaphore v).
- 5. **POSIX Threads [6P]**: programming with pthread functions (viz. pthread_create, pthread_join, pthread_exit,

pthread attr init, pthread cancel)

6. **Inter-process communication [6P]**: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO),

message passing & shared memory(IPC version V).

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Object Oriented Programming

Code: PCC-CS503 Contacts: 3L

Name of the Subject: Object Oriented Programming							
Course Code: PCC-CS 503 Semester: V							
Durati	ion:6 months	Maximum Ma	arks:100				
Teach	ing Scheme		Examination Scheme				
Theor	y:3 hrs./week		Mid Semester exam: 15				
Tutori	al: NIL		Assignment an	d Quiz : 10 mark	S		
			Attendance: 5	marks			
Praction	cal: hrs./week		End Semester	Exam:70 Marks			
Credit	Points:		3				
Unit	C	ontent		Hrs/Unit	Marks/Unit		
	Abstract data types and			8			
1	specification.How to im	•					
	Concrete state space, o	concrete invaria	ant,				
	abstraction function.						
	Implementingoperation						
	illustrated by the Text of	•					
2	Features of object-orie		•	8			
	Encapsulation, object in	dentity, polymo	orphism				
_	-but not inheritance.			_			
3	Inheritance in OO design		:£:	6			
	Design patterns. Introd	uction and clas	ssification.				
	Theiterator pattern.						
4	4 Model-view-controller pattern.			6			
	Commands as methods and as objects. ImplementingOO language features.						
	Memory management.	ge reatures.					
5 Generic types and collections			6				
5	GUIs. Graphical programming with Scale		e	6			
	and Swing.	ming with Star	_				
	The software developme	ent process					

Text book and Reference books:

- 1. Rambaugh, James Michael, Blaha "Object Oriented Modelling and Design" Prentice Hall, India
- 2. Ali Bahrami "Object Oriented System Development" Mc Graw Hill
- 3. Patrick Naughton, Herbert Schildt "The complete reference-Java2" TMH
 4. R.K Das "Core Java For Beginners" VIKAS PUBLISHING
- 5. Deitel and Deitel "Java How to Program" 6th Ed. Pearson
- 6. Ivor Horton's Beginning Java 2 SDK Wrox
- 7. E. Balagurusamy "Programming With Java: A Primer" 3rd Ed. TMH

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Sullabur for B. Tash in Artificial Intelligence and Mashing Learning

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Object Oriented Programming & Java Lab

Code: PCC-CS593 Contacts: 4P

Name of the Course:	Object Oriented Programming Lab
Name of the course.	Object Official Frogramming Eab
Course Code: PCC-	Semester:V
CS593	
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

- 1. Assignments on class, constructor, overloading, inheritance, overriding
- 2. Assignments on wrapper class, arrays
- 3. Assignments on developing interfaces- multiple inheritance, extending interfaces
- 4. Assignments on creating and accessing packages
- 5. Assignments on multithreaded programming
- 6. Assignments on applet programming

Note: Use Java for programming

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Subject Code	Subject Name	L	Т	Р	С
PCCAIML 502	Introduction to Machine Learning	3	0	0	3
Pre-requisite	NIL				

Course Objectives:

- 1. Ability to comprehend the concept of supervised and unsupervised learning techniques
- 2. Differentiate regression, classification and clustering techniques and to implement their algorithms.
- 3. To analyze the performance of various machine learning techniques and to select appropriate features for training machine learning algorithms.

Expected Course Outcome:

- 1. Understand the concepts of various machine learning strategies.
- 2. Handle computational data and learn ANN learning models.
- 3. Solve real world applications by selecting suitable learning model.
- 4. Boost the performance of the model by combining results from different approaches.
- 5. Recognize and classify sequencing patterns using HMM.
- 6. Infer the association and relationship between the data objects.
- 7. Construct machine learning model for unseen data and can solve real world application.

Module:1 Introduction to Machine Learning 3 hours

Introduction to Machine Learning (ML); Feature engineering; Learning Paradigm, Generalization of hypothesis, VC Dimension, PAC learning, Applications of ML.

Module:2 Data Handling and ANN 4 hours

Feature selection Mechanisms, Imbalanced data, Outlier detection- Artificial neural networks including backpropagation- Applications

Module:3 ML Models and Evaluation 6 hours

Regression: Multi-variable regression; Model evaluation; Least squares regression; Regularization; LASSO; Applications of regression, Classification – KNN, Naïve Bayes, SVM, Decision Tree; Training and testing classifier models; Cross-validation; Model evaluation (precision, recall, F1-mesure, accuracy, area under curve); Statistical decision theory including discriminant functions and decision surfaces

Module:4 Model Assessment and Inference 4 hours

Model assessment and Selection – Ensemble Learning – Boosting, Bagging, Model Inference and Averaging, Bayesian Theory, EM Algorithm

Module:5 Hidden Markov Models 3 hours

Hidden Markov Models (HMM) with forward-backward and Vierbi algorithms; Sequence classification using HMM; Conditional random fields; Applications of sequence classification such as part-of-speech tagging

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Mini	ng Associatio	n Rules in Large Databases. Mining Frequent Patterns basic concepts - E	fficient and
scala	ble frequent i	tem set mining -methods, Apriori algorithm, FP-Growth algorithm	
Mod	lule:7	Clustering	5 hour
КМ	eans, Hierarch	nical Clustering – Single, complete, Average linkage; Ward's algorithm;	Minimum
span	ning tree clust	ering; BIRCH clustering	
Mod	lule:8	Recent Trends	2 hour
Rece	nt Trends and	•	
		Total Lecture hours:	30 hours
Text	Book(s)		
1.	Ethem Alp	aydin, Introduction to Machine Learning, MIT Press, Pearson, Third Edition	, 2014.
2.	Friedman	Jerome, Trevor Hastie, and Robert Tibshirani. The Elements of Stati	stical
	Learning.		
	Springer-V	erlag, 2nd Edition, 2013.	
Refe	rence Books		
1.	Kevin P. M	urphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.	
2.	Peter Flac Data",	ch, "Machine Learning: The Art and Science of Algorithms that Make S	Sense of
	Cambridge	e University Press, 2012.	

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Subject Code		Subject Name	L	Т	Р		С
PCCAIML 592		Machine Learning Lab	0	0	4		2
Pre-re	equisite	NIL					
Lah Ev	xperiments						
1.	kperiments	Implement Decision Tree Jearning			2 ho	urc	
		Implement Decision Tree learning					
2.		Implement Logistic Regression			2 ho	urs	
3.	lm	plement classification using Multilayer perceptron			2 ho	urs	
4.		Implement classification using SVM			2 ho	urs	
5.		Implement Adaboost			2 ho	urs	
6.	Implement Bagging using Random Forests			2 hours			
7.	Impleme	ent K-means Clustering to Find Natural Patterns in Data	2 hours				
8.		Implement Hierarchical clustering	2 hours				
9.		Implement K-mode clustering	2 hours				
10	Im	plement Association Rule Mining using FP Growth			2 ho	urs	
11.		Classification based on association rules			2 ho	urs	
12.	Implement G	aussian Mixture Model Using the Ex ectation Maximization	2 hours				
13	Evaluatir	g ML algorithm with balanced and unbalanced datasets			2 ho	urs	
14		Comparison of Machine Learning algorithms			2 ho	urs	
15	Implement k-nearest neighbour algorith		2 hours				
		Total Lecture hours:		3	30 hc	urs	

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Introduction to Industrial Management (Humanities III)

Code: HSMC-501 Contacts: 3L

Name	e of the Course:	Introduction to	Industrial Mana	ngement (Humai	nities III)
Cours	e Code: HSMC-501	Semester: V			
Durat	ion:6 months	Maximum Mark	s:100		
	Teaching Scheme		Examination 9	Scheme	
	J				
Theor	ry:2 hrs./week		Mid Semester	exam: 15	
Tutor	ial: NIL		Assignment a	nd Quiz : 10 mar	ks
			Attendance: 5	marks	
Practi	ical: NIL		End Semester	Exam:70 Marks	
Credit	t Points:	2			
Unit	Content			Hrs/Unit	Marks/Unit
	Introduction			6	
1	System- concept, o				
	types, parameters	, variables and			
	behavior.				
	Management – defi	nition			
	andfunctions.				
	Organization st	tructure:			
	ii. Goals.				
	iii. Factors conside	red in			
	formulatingstructu				
	iv. Types.	•			
	v. Advantages and	d disadvantages.			
	vi. Applications.				
	Concept, meaning a				
	division of labor, sca				
	processes, span of c				
	ofauthority, centrali				
	decentralization in i	ndustrial			
	management.				
	Organizational cultu				
	-meaning, difference	es and factors			
affecting them. Moral-factors affecting moral.		offecting maral			
	Relationship between	•			
	andproductivity.				
	Job satisfaction- fact	tors influencing			
	jobsatisfaction.	3			
	Important provision	s of factory act			
	andlabor laws.	,			

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

2	Critical Path Method (CPM) and Programme Evaluation Review Technique (PERT):	8	
	2.1 CPM & PERT-meaning, features, difference, applications. 2.2 Understand different terms used in network diagram.		
	Draw network diagram for a real life		
	project containing 10-15 activities,		
	computation of LPO and EPO.(Take		
	minimum three examples).		
	Determination of critical path on		
	network. Floats, its types and determination of		
	floats.		
	Crashing of network, updating and its		
	applications.		
3	Materials Management:	6	
	Material management-definition,		
	functions, importance, relationship with		
	other departments. Purchase - objectives, purchasing		
	systems, purchase procedure, terms and		
	forms used in purchase department.		
	Storekeeping- functions, classification		
	of stores as centralized and decentralized		
	with their advantages, disadvantages and		
	application in actual practice.		
	Functions of store, types of records		
	maintained by store, various types and		
	applications of storage equipment, need		
	and general methods for codification of		
	stores. Inventory control:		
	i. Definition.		
	ii. Objectives.		
	iii. Derivation for expression for		
	Economic Order Quantity (EOQ) and		
	numeric examples. iv. ABC analysis and		
	other modern methods of analysis.		
	v. Various types of inventory models		
	such as Wilson's inventory model,		
	replenishment model and two bin model.		
	(Only sketch and understanding, no		
	derivation.).		
	3.6 Material Requirement Planning (MRP)- concept, applications and brief		
	details about software packages available		
	in market.		

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

4	Production planning and Control (PPC):	8	
	Types and examples of production.		
	PPC : i. Need and importance. ii.		
	Functions. iii. Forms used and their		
	importance. iv. General approach		
	foreach type of production.		
	Scheduling- meaning and need		
	forproductivity and utilisation.		
	Gantt chart- Format and method		
	toprepare.		
	Critical ratio scheduling-method		
	andnumeric examples.		
	Scheduling using Gantt Chart (for at		
	least 5-7 components having 5-6		
	machining operations, with processes,		
	setting and operation time for each		
	component and process, resources		
	available, quantity and other		
	necessarydata), At least two		
	examples.		
	4.7 Bottlenecking- meaning, effect		
	andways to reduce.		
5	Value Analysis (VA) and Cost Control:	4	
	5.1 VA-definition, terms used, process and		
	importance. 5.2 VA flow diagram. DARSIRI		
	method of VA.		
	Case study of VA-at least two.		
	Waste-types, sources and ways to reduce		
	them. Cost control-methods and important		
	guide lines.		
6	Recent Trends in IM:	4	
	ERP (Enterprise resource planning) - concept,		
	features and applications.		
	Important features of MS Project.		
	Logistics- concept, need and		
	benefits.		
	Just in Time (JIT)-concept and benefits.		
	Supply chain management-concept and benefits.		

Text book and Reference books:

- 1. L.S. Srinath—"CPM & PERT principles and Applications".
- 2. Buffa "Modern Production Management".
- 3. N. Nair "Materials Management".
- 4. O. P. Khanna "Industrial Engineering & Management".
- 5. Mikes "Value Analysis".
- 6. S.C. Sharma, "Engineering Management Industrial Engineering & Management", Khanna Book Publishing Company, New Delhi

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Cloud Computing Code: PECAIML501A

Contact: 3L

Name of the Course:	Cloud Computing		
Course Code: PECAIML501A	Semester: V		
Duration: 6 months	Maximum Marks: 10	00	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/ Unit	Marks/Unit
1	Definition of Cloud Computing and itsBasics (Lectures). Defining a Cloud, Cloud Types — NIST model, Cloud Cube model, Deployment models (Public , Private, Hybrid and Community Clouds), Service Platform as a Service, Software asa Service with examples of services/ serviceproviders, models — Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing — a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by	,	Marks/Unit
	Clients, laaS –Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS – Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)		

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

	Use of Platforms in Cloud Computing Concepts of	12	
2	Abstraction and Virtualization Virtualization		
	technologies : Typesofvirtualization		
	(access, application, CPU,storage),		
	Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D,		
	D2D) Load Balancing and Virtualization: Basic		
	Concepts, Network resources for load balancing,		
	Advanced load balancing (including		
	ApplicationDelivery Controller and Application		
	Delivery Network), Mention of The Google Cloud as an		
	example of use of load balancing Hypervisors: Virtual		
	machine technology and types, VMware		
	vSphere Machine Imaging (including mention of Open		
	Virtualization Format – OVF)		
	Porting of applications in the Cloud: The simple Cloud		
	API and AppZero Virtual Application appliance,		
	Concepts of Platform as a Service, Definition of		
	services, Distinction between SaaS and PaaS		
	(knowledge of Salesforce.com and Force.com),		
	Application development		
	Use of PaaS Application frameworks,		
	Discussion of Google Applications Portfolio – Indexed		
	search, Dark Web, Aggregation and disintermediation,		
	Productivity applications and service, Adwords,		
	Google Analytics, Google Translate, a brief discussion		
	on Google Toolkit (including introduction of Google		
	APIs in brief), major features of Google App Engine		
	service., Discussion of Google Applications Portfolio –		
	Indexed search, Dark Web, Aggregation and		
	disintermediation, Productivity applications and		
	service, Adwords, Google Analytics, Google Translate, a		
	brief discussion on Google Toolkit (including		
	introduction of Google APIs in brief), major features of		
	Google App Engine service, Windows Azure platform:		
	Microsoft's approach, architecture, and main		
	elements, overview of Windows Azure AppFabric,		
	Content Delivery Network, SQL Azure, and Windows		
	Live services,		
		J	

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

3	Cloud Infrastructure: Cloud Management: An overview of the features of network management systems and a brief introduction of related products from large cloud vendors, Monitoring of an entire cloud computingdeployment stack — an overview with mention of some products, Lifecycle management of cloud services (six stages of lifecycle). Concepts of Cloud Security: Cloud security concerns, Security boundary, Security service boundary Overview of securitymapping Security of data: Brokered cloudstorage access, Storage location and tenancy, encryption, and auditing and compliance Identity management (awareness of Identityprotocol standards)	7	
4.	Concepts of Services and Applications: Service Oriented Architecture: Basic conceptsof message-based transactions, Protocol stackfor an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs, Applications in the Cloud: Concepts of cloud transactions, functionality mapping,	8	
	Application attributes, Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs Cloud-based Storage: Cloud storage definition – Manned and Unmanned Webmail Services: Cloud mail services including Google Gmail, Mail2Web, WindowsLive Hotmail, Yahoo mail, concepts of Syndication services		

Text book and Reference books:

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- 2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola,
- S. Thamarai Selvi, McGraw Hill Education (India) Private Limited,2013
- 3. Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
- 4. Cloud Computing, Miller, Pearson
- 5. Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Toch in Artificial Intelligence and Machine Learning

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

Pattern Recognition Code: PECAIML501B

Contact: 3L

Name of the Subject:	bject: Pattern Recognition		
Course Code: PECAIML501B	Semester: V		
Duration:6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3	_	

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decision surfaces Normal density and discriminant functions Discrete features	8	
3	Parameter estimation methods 6L Maximum-Likelihood estimation Gaussian mixture models Expectation-maximization method Bayesian estimation	6	
4.	Hidden Markov models for sequential pattern classification 8L Discrete hidden Markov models Continuous density hidden Markov models	8	
5	Dimension reduction methods 3L 5.1. Fisher discriminant analysis 5.2Principal component analysis. Parzen-window method K-Nearest Neighbour method	3	
6	Non-parametric techniques for density estimation	2	
7	Linear discriminant function based classifier 5L Perceptron Support vector machines	5	

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

8	Non-metric methods for pattern classification 4L Non-numeric data or nominal data Decision trees	4	
9	Unsupervised learning and clustering 2L	2	
	Criterion functions for clustering		
	Algorithms for clustering: K-means,		
	Hierarchical and other methods		

Text book and Reference books:

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Subject: Graph Theory					
Course Code: PECAIML501C		Semester: V			
		Maximum Marks: 100			
Teaching So	cheme	Examination Scheme			
Theory: 3 h	rs./week	End Semester Exam: 70			
Tutorial:		Attendance : 5			
Practical: 0		Continuous Assessment: 25			
Credit: 3		Practical Sessional internal continuous evaluation: NA			
		Practical Sessional external examination: NA			
Aim:					
Sl. No.					
1.	Understand the basic of graph theory.				
2.	Understand path, walks and cycle				
3.	Understand set covering and matches.				
4.	Understand vertex coloring.				
Objective:	Objective:				
SI. No.					
1.	To learn about the vertex, edge, path and cycle.				
2.	To learn about connected graph.				
3.	To learn about shortest path.				
4.	To learn about set covering and matching.				
5.	To learn about vertex coloring.				
Pre-Requi	Pre-Requisite:				

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

SI. No.			
	None		
Contents		4 Hrs./\	week
Chapter	Name of the Topic	Hours	Marks
01	Introduction Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic	7	14

	sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.		
02	Connected graphs and shortest paths Walks, trails, paths, cycles, Connected graphs, Distance, Cutvertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm.	7	14
03	Trees Definitions and characterizations, Number of trees, Cayley's formula, Kircho-matrix-tree theorem, Minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury's algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.	7	14
04	Independent sets coverings and matchings Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall's Theorem, K"onig's Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.	8	14

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

05	Vertex Colorings Basic definitions, Cliques and chromatic number, Mycielski's theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.				7	14		
	Sub Total:						36	70
	Internal As	sessment Ex	amination 8	k Preparatio	n of Semest	er	4	30
	Examination			•				
	Total:						40	100
List of Bo	ooks							
Text Boo	ks:							
Name of	Author	Title of the Book		Edition/ISSN/ISBN		Name of the		he
						Publisher		
J. A. Bo	ndy and U. S.	Graph Theory		1 st edition		Springer		
R. Murty								
Richard	J. Trudeau	Introduction to Graph		2 nd edition		Do	Dover Publications	
		Theory						
	e Books:				05.400.504			
Chartra	nd and	A First Course in				ро	Dover Publications	
Zhang		Graph Theory		ISBN-13: 978- 0486483689				
Maarte	n van Steen	Graph Theory and		ISBN-10: 9081540610		Ma	Maarten van Steen	
		Complex Networks: An		ISBN-13: 978-			Widditell vall Steell	
		Introduction		9081540612				
End Sem	ester Examin	ation Schem	e. Max	kimum Mark	s-70.	1	Time a	llotted-
3hrs.								
Group	Unit	Objective Questions		Subjective Que			estions	
		(MCQ only	with the					
		correct ans	swer)					
		No of	Total	No of	То	Ma	rks	Total
		question	Marks	question	answer	per		Marks
		to be set		to be set		que	stion	
Α	1 to 5	10	10					
В	1 to 5			5	3	5		60
С	1 to 5			5	3	15		

Syllabus for B. Tech in Artificial Intelligence and Machine Learning (Applicable from the academic session 2020-2021)

- Only multiple choice type questions (MCQ) with one correct answer are to be set in the objective part.
- Specific instruction to the students to maintain the order in answering objective questions should be given on top of the question paper.

Examination Scheme for end semester examination:

Group	Chapter	Marks of each question	Question to be set	Question to be answered
Α	All	1	10	10
В	All	5	5	3
С	All	15	5	3

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

SEMESTER - VI

Application of machine learning in industries

Code: PCC-AIML6 01

Contacts: 2L

Name of the Course:	Application of machine learning in industries			
Course Code: PCC- AIML6 01	Semester: VI			
Duration: 6 months Maxim		ks:100		
Teaching Scheme		Examination Scheme		
Theory:2 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points:	2			

- Introduction to linear regression (and multivariate linear regression)
- Logistic Regression and regularization
- Practical aspects of implementation
- Decision trees and pruning, implementation of decision trees
- Support vector machines and making them work in practice
- Boosting implementing different boosting methods with decision trees.
- Using the algorithms for several tasks how to set up the problem, debug, select features and develop the learning algorithm.
- Unsupervised learning k-means, PCA, hierarchical clustering.
 - Implementing the clustering algorithms
 - Parallelizing the learning algorithms
 - Applications
- Choosing from multiple algorithms What will work?

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Application of machine learning in industries

LabCode: PCC- AIML 691

Contacts: 4P

Name of the Course:	Application of machine learning in industries Lab
Course Code: PCC- AIML 691	Semester: VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

- 1. Explore visualization features of the tool for analysis and WEKA.
- 2. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets
- 3. Demonstrate performing classification on data sets
- 4. Demonstrate performing clustering on data sets
- 5. Sample Programs using German Credit Data
- 6. One approach for solving the problem encountered in the previous question is using cross-validation? Describe what is cross validation briefly. Train a decision tree again using cross validation and report your results. Does accuracy increase/decrease? Why?
- 7. Check to see if the data shows a bias against "foreign workers" or "personal-status".. Did removing these attributes have any significantly effect? Discuss
- 8. Another question might be, do you really need to input so many attributes to get good results? Try out some combinations.
- 9. Train your decision tree and report the Decision Tree and cross validation results. Are they significantly different from results obtained in problem 6
- 10. How does the complexity of a Decision Tree relate to the bias of the model?
- 11. One approach is to use Reduced Error Pruning. Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross validation and report the Decision Trees you obtain? Also Report your accuracy using the pruned model Does your Accuracy increase?
- 12. How Can you Convert Decision Tree in to "If then else Rules". Make Up your own Small Decision Tree consisting 2-3 levels and convert into a set of rules. Report the rule obtained by training a one R classifier. Rank the performance of j48, PART, one R.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

Course Co	de: PCCAIML 602	Semester: VI		
Duration	: 36 Hrs.	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hrs./week	End Semester Exam: 70		
Tutorial:	0	Attendance : 5		
Practical:	:	Continuous Assessment:25		
Credit: 3				
Aim:				
Sl. No.				
1.	To improve the performan	ce of a Deep Learning model		
2.	to the reduce the optimizat	tion function which could be divided based on	the classif	icationand
Objective	: :			
Sl. No.				
1.	To acquire knowledge on	the basics of neural networks.		
2.	To implement neural networks using computational tools for variety of problems.			
3.	To explore various deep learning algorithms.			
Pre-Requ	isite:			
Sl. No.				
1.	Calculus, Linear Algebra			
2.	Probability & Statistics			
3.	Ability to code in R/Pytho	n		
Contents			Hrs./we	ek
			İ	

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

01	Introdu	ction		3	5
		paradigms of earning proble rning framework, review of f	-	s in	
02		ward neural network		6	10
		l Neural Network, activation, cardinality, operations, and	-		
03	Training	Training Neural Network			
		nimization, loss function, backlection, and optimization.	ckpropagation, regularization	on,	
04		onal Random Fields		9	15
		hain, partition function, Marl ion, Training CRFs, Hidden			
05	Deep Le	earning		6	15
	models,	ed Forward network, regular dropouts, Convolutional Neu Network, Deep Belief Networ			
06		arning research		6	10
	Object r	ecognition, sparse coding, co	omputer vision, natural		
	Sub Tot			36	70
	Internal Examina	Assessment Examination a	& Preparation of Semester	r 4	30
·	Total:			40	100
List of Bo Text Boo					
Nam	e of Author	Title of the Book	Edition/ISSN/ISBN	Name of t	he Publisher
I.,E	odfellow, Bengio,Y., lCourville A.,	Deep Learning		MIT	Press
Satish Kumar Neural Networks: A Classroom Approach				Tata Mo	:Graw-Hill
Referen	ce Books:				
Bis	hop, C. ,M.	Pattern Recognition and Machine Learning		Spr	ringer

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Yegnanarayana, B.	Artificial	PHI Learning Pvt. Ltd
	Neural	
	Networks	
Golub, G.,H., and VanLoan,C.,F.	Matrix Computations	JHU Press
vanizouri, c.,r.		

Soft Computing

Code: PECAIML603 & PECAIML693

Contacts: 3L + 4P

Name of the Course:	Soft Computing
Course Code: PECAIML603 &	Semester: VI
PECAIML693	
Duration:6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz: 10 marks
	Attendance: 5 marks
Practical: 4 hrs./week	End Semester Exam: 70 Marks
	Practical Sessional internal continuous
	evaluation:40
	Practical Sessional external examination: 60
Credit Points:	3+2

Unit	Content	Hrs/U	Marks/Unit
		nit	
1	Introduction: Introduction to soft computing; introduction to fuzzy sets and fuzzy logic systems; introduction to biological and artificial neural network; introduction to Genetic Algorithm	8	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

2	Fuzzy sets and Fuzzy logic systems: Classical Sets and Fuzzy Sets and Fuzzy relations: Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods. Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods. Classical Logic and Fuzzy Logic: Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication Fuzzy Rule based Systems: Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting	10	
3	Neural Network Introduction to Neural Networks: Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline andMadaline networks; single layer network; Back- propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition and classification	10	
4.	Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: geneticalgorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition	10	
5	PSO:Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).	4	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

	-	(Applicab	le from the ac	cademic session	on 2020-2021	.)	
Practical:							
Skills to be	developed:						
1. Able to a	pply Soft Co	omputing techn	iques to solv	e a number of	real life prob	olems.	
Assignmen	ts: : Assignı	nent from the	ory				
List of Bool	ĸs						
Text Books	:						
Name of Au	uthor	Title of the B	Book	Edition/ISS	N/ISBN	Name of the Publisher	
Timothy J. Ross, JohnWiley and Sons Fuzzy logic with engineering applications							
S. Rajasekaran andG.A.V.Pai			Neural Networks, Fuzzy Logic and Genetic Algorithms			PHI	
S N Sivanandam, S.Sumathi, John		Principles of Computing	Principles of Soft Computing				
Poforonco	Pooks:						
Reference Books: George J. Klir and BoYuan		Fuzzy Sets and Fuzzy Logic: Theory and Applications				Prentice Ha	.11
Simon Haykin		Neural Netw	Neural Networks: A Comprehensive			Prentice Ha	11.
End Semes	ter Examina	tion Scheme.	Maxim	um Marks-70		Γime allotted	-3hrs.
Group	Unit	Objective Questions (MCQ only with the			Subjective	e Questions	
		correct answ					
		No of question to be set	Total Marks	No of question to be set	To answer	Marks per question	Total Marks
Α	ALL	10		5	3	15	

ΑII В ΑII 45 5 3

70

10

- Only multiple choice type question (MCQ) with one correct answer are to be set in the objective part.
- Specific instruction to the students to maintain the order in answering objective questions should be given on top of the question paper.

Examination Scheme for end semester examination:

C

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

Group	Chapter	Marks of each question	Question to be set	Question to be answered
Α	ALL	1	10	10
В	ALL	5	5	3
С	ALL	15	5	3

Examination Scheme for Practical Sessional examination:				
Practical Internal Sessional Continuous Evaluation				
Internal Examination:				
Continuous evaluation		40		
External Examination: Examin	er-			
Signed Lab Assignments	10			
On Spot Experiment	40			
Viva voce	10	60		

Name o	f the Course:	Computer Networks				
Course	Code: PCC-CS602	Semester: VI				
Duratio	n:6 months	Maximum Mark	s:100			
Teachi	ng Scheme		Examination Scl	heme		
Theory:	Theory:3 hrs./week Mid Semester exam: 15					
Tutorial: NIL Assign		Assignment and (Assignment and Quiz: 10 marks			
			Attendance: 5 marks			
Practica	l: hrs./week		End Semester Ex	am:70 Marl	ΚS	
Credit F	oints:	3	•			
Objecti	ve:					
1	To develop an understanding of modern network architectures from a design and performance perspective.					
2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).					
3	To provide an opportunity to do network programming					
4	To provide a WLAN measurement ideas.					
Unit	Content Hrs/Unit Marks/Unit				Marks/Unit	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

			1
	Data communication Components:		
1	Representation of data and its flow	9	
	Networks, Various Connection Topology,		
	Protocols and Standards, OSI model,		
	Transmission Media, LAN: Wired LAN,		
	Wireless LANs, Connecting LAN and Virtual		
	LAN, Techniques for Bandwidth utilization:		
	Multiplexing - Frequency division, Time		
	division and Wave division, Concepts on		
	spread spectrum.		
	Data Link Layer and Medium Access Sub	8	
2	Layer: Error Detection and Error Correction -		
	Fundamentals, Block coding, Hamming		
	Distance, CRC; Flow Control and Error control		
	protocols - Stop and Wait, Go back –		
	N ARQ, Selective Repeat ARQ, Sliding		
	Window, Piggybacking,		
	Random Access, Multiple access protocols -		
	Pure ALOHA, Slotted		
	ALOHA, Slotted ALOHA, CSMA/CD, CDMA/CA		
	Network Layer: Switching, Logical addressing	14	
	- IPV4, IPV6; Address mapping - ARP,	17	
3	RARP, BOOTP and DHCP–Delivery,		
	Forwarding and Unicast Routing protocols.		
		8	
	•	8	
4.	Communication, User Datagram Protocol		
	(UDP), Transmission Control Protocol (TCP),		
	SCTP Congestion Control; Quality of Service,		
	QoS improving techniques: Leaky Bucket and		
_	Token Bucket algorithm.	0	
5	Application Layer: Domain Name Space	8	
	(DNS), DDNS, TELNET,		
	EMAIL, File Transfer Protocol (FTP), WWW,		
	HTTP, SNMP, Bluetooth, Firewalls, Basic		
	concepts of Cryptography.		

Text book and Reference books:

- 1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi

Course Outcomes:

On completion of the course students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

world will be ruled by ideas, concept, and creativity.

- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Computer Networks Lab

Code: PCC-CS692

Contacts: 4P

Name of the Course:	Computer Networks Lab
Course Code: PCC- CS692	Semester: VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

- 1) NIC Installation & Configuration (Windows/Linux)
- 2) Understanding IP address, subnet etc

Familiarization with

- Networking cables (CAT5, UTP)
- Connectors (RJ45, T-connector)
- Hubs, Switches
- 3) TCP/UDP Socket Programming
 - Simple, TCP based, UDP based
 - Multicast & Broadcast Sockets
 - Implementation of a Prototype Multithreaded Server
- 4) Implementation of
- □ □ Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window)
- □ □ Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check)
- □ □ Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N)
- 5) Server Setup/Configuration

FTP, TelNet, NFS, DNS, Firewall

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Big Data Analytics Code: PECAIML601A

Contacts: 3L

Name of the Course:	Big Data Analytics		
Course Code: PECAIML601A	Semester: VI		
Duration:6 months	Maximum Mark	s: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		
LECTURE WITH BREAD	KUP		NO. OF LECTUR
industry examples of big data big data, risk and big data trading, big data and healthd big data technologies, introd and big data, mobile business trans firewall analytics.	ta, web analytics, , credit risk mana are, big data in me duction to Hadoop	f key trends, unstructured data, big data and marketing, fraud and gement, big data and algorithmic edicine, advertising and big data, o, open source technologies, cloud and sourcing analytics, inter and	8
document data models, rel materialized views, distribu peer replication, sharding	ationships, graph tion models, shardi and replication, c	odels, aggregates, key-value and databases, schemaless databases, ing, master-slave replication, peer-consistency, relaxing consistency, combining, composing map-reduce	8
pipes, design of Hadoop di	stributed file syste	ng out, Hadoop streaming, Hadoop em (HDFS), HDFS concepts, Java y, compression, serialization, Avro,	9
· ·	ic Map-reduce, YA shuffle and sort, ta		10
Unit 5:			7
Hbase, data model and implementations, Hbase clients, Hbase examples, praxis.Cassandra, Cassandra data model, Cassandra examples, Cassandra clients, Hadoop integration.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Unit 6:	
Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts.	6
Hive, data types and file formats, HiveQL data definition, HiveQL data	O
manipulation, HiveQL queries.	

References:

- 1. Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- 2. V.K. Jain, Big Data and Hadoop, Khanna Publishing House, New Delhi (2017).
- 3. V.K. Jain, Data Analysis, Khanna Publishing House, New Delhi (2019).
- 4. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- 5. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.
- 6. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 7. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 8. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 9. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 10. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- 11. Alan Gates, "Programming Pig", O'Reilley, 2011.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Distributed Systems Code: PECAIML-601C

Contact: 3L

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION		
1	Distributed data processing; What is a DDBS;	8	
	Advantages and disadvantages of DDBS; Problem		
	areas; Overview of database and computer network		
	concepts DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM ARCHITECTURE		
	Transparencies in a distributed DBMS; Distributed		
	DBMS architecture; Global directory issues		
	DISTRIBUTED DATABASE	11	
2	DESIGN DATABASE	11	
2	Alternative design strategies;		
	Distributed design issues;		
	Fragmentation; Data allocation		
	SEMANTICS DATA CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY		
	PROCESSING ISSUES		
	Objectives of query processing;		
	Characterization of query processors;		
	Layers of query processing; Query		
	decomposition; Localization of		
	distributed data		
	DISTRIBUTED QUERY OPTIMIZATION	11	
3	Factors governing query optimization; Centralized		
	query optimization; Ordering of fragment queries;		
	Distributed query optimization algorithms		
	TRANSACTION MANAGEMENT		
	The transaction concept; Goals of transaction		
	management; Characteristics of transactions;		
	Taxonomy of transaction models		
	CONCURRENCY CONTROL		
	Concurrency control in centralized database systems;		
	Concurrency control in DDBSs; Distributed		
	concurrency control algorithms; Deadlock		
	management DDDG Terror of Cileran	0	
4.	Reliability issues in DDBSs; Types of failures;	8	
4.	Reliability techniques; Commit protocols; Recovery		
5	protocols Algorithm PARALLEL DATABASE SYSTEMS	6	
3	Parallel architectures; parallel query	U	
	processing and		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

6	ADVANCED TOPICS Mobile	4	
	Databases, Distributed Object		
	Management, Multi-databases		

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

Data Mining

Code: PECAIML-601B

Contacts: 3L

Name of the Course:	Data Mining and prediction by machines		
Course Code PEC-AIML-601B	Semester: VI		
Duration: 6 months	Maximum Mark	ks: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Unit 1:		
1	Overiew of data ming and predictive analytics. Where	4	
	does it apply and where does it not apply. The emerging		
	interdisplinary field of Data Science – what on Earth is		
	it? The potential pitfalls of analytics including big bad		
	data and the problem of local sparsity in large data sets -		
	- big never guarantees sufficient. Brief discussion of		
	Career Opportunities including an overview of the UNH		
	MS Analytics program.		
	Unit 2:		
2	Data preprocessing and cleanup	3	
	including informative missing values		
	and imputation.		
	1		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

	Unit 3:		
3	Unsupervised learning: Exploring data with visualization (primarily JMP Pro and Enterprise Guide), Principal Components, Cluster Analysis, Variables Clustering, and Market Basket analysis (association analysis). The problem of explanatory (traditional) vs predictive modeling and why it matters.	8	
4.	Unit 4: The under and overfitting dilemma of predictive modeling. Includes a discussion of measures of overfitting and underfitting such as AICc, BIC, and the very new ERIC.	6	
5	Unit 5: Validation strategies to assess model predictive behavior and predictive inference	2	
6	Unit 6: Supervised learning for classification: k-nearest neighbors, Decision Trees and Random Forests, Naïve Bayes, Neural Nets, Logistic Regression, Generalized Regression, Support Vector Machines, Discriminant Analysis. Topics include boosted neural and tree models.		
7	Unit 7: Supervised learning for prediction: review of multiple linear regression and related topics like influence and multi-collinearity, PCR, Neural Nets, Generalized Regression including the LASSO (adaptive), LARS, Ridge, and Elastic Net (adaptive). Traditional variable Selection strategies such as Forward Selection and All Possible Models will also be covered.		
8	Unit 8: Model assessment measures for predictive and classification models: model scoring, prediction error analysis, ROC and Lift curves, profit matrices for	6	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

classification, various model comparison criteria.	
Ensemble Modeling: combining predictive models to	
create even more powerful models; includes boosting	
and bagging strategies.	

Text book and Reference books:

- 1. Data Mining for Business Intelligence: Concepts, Techniques and Applications with JMP Pro; Shmueli, Bruce, Stephens, Patel 2017, Wiley & Sons
- 2. Preparing Data for Analysis with JMP by Robert Carver
- 3. Introduction to Statistical Learing, sixth printing, by Gareth, Tibshirani, Hastie, and Whitten

Database Management Systems

Code: OECAIML-601A

Contact: 3L

Name of the Course:	Database Management Systems	
Course Code: OECAIML-601A	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme	Examination Scheme	
Theory:3 hrs./week	Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz: 10 marks	
		Attendance: 5 marks
Practical: hrs./week		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Database system architecture:Data		
1	Abstraction, Data Independence, Data	9	
	Definition Language(DDL),Data		
	ManipulationLanguage(DML).		
	Data models: Entity-relationshipmodel,		
	network model, relational and object oriented		
	data models, integrity constraints, data		
	manipulation operations.		
	-		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

2	Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2,	13
	SQLserver. Relational database design: Domain	
	Relational database design: Domain and data dependency,	
	Armstrong's axioms, Normal forms,	
	Dependency preservation, Losslessdesign.	
	Query processing and optimization:	
	Evaluation of relational algebra	
	expressions, Query equivalence, Join	
	strategies, Query optimization	
	algorithms.	
3	Storage strategies: Indices, B-trees, hashing.	3
4.	Transaction processing: Concurrencycontrol, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi- version and optimistic Concurrency Control schemes, Database recovery.	5
5	Database Security: Authentication, Authorization and access control, DAC,MAC and RBAC models, Intrusion detection, SQL injection.	3
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data	3

Text book and Reference books:

- 1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry
- F. Korth, S. Sudarshan, McGraw-Hill.
- 2. "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer Science Press.
- 3. Database Management Systems, R.P. Mahapatra, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018)
- 4. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S.Navathe,
- 5. PearsonEducation "Foundations of Databases", Reprint by SergeAbiteboul, Richard Hull, Victor Vianu, Addison-Wesley

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Human Computer Interaction

Code:OECAIML-601B

Contact: 3L

Name of the Course:	Human Computer Interaction	
Course Code: OECAIML-	Semester: VI	
601B		
Duration: 6 months	Maximum Marks	::100
Teaching Scheme	Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points:	3	

Unit	Content	Hrs/U	Marks/
		nit	Unit
		9	
1	Human: I/O channels – Memory – Reasoning and problem solving;		
	The computer: Devices – Memory – processing and networks;		
	Interaction: Models – frameworks – Ergonomics – styles – elements –		
	interactivity- Paradigms.		
	Interactive Design basics – process – scenarios – navigation – screen	11	
2	design –		
	Iteration and prototyping. HCI in software process – software life cycle		
	usability engineering – Prototyping in practice – design rationale.		
	Design rules		
	– principles, standards, guidelines, rules. Evaluation Techniques –		
	Universal		
	Design.		
	Cognitive models –Socio-Organizational issues and stake holder		
3.	requirements	8	
] 3.	-Communication and collaboration models-Hypertext,		
	Multimedia and WWW.		
	iviatimicala and iv vi vi.		
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of	8	
1	Mobile		
	Applications: Widgets, Applications, Games- Mobile Information		
	Architecture,		
	Mobile 2.0, Mobile Design: Elements of Mobile Design,		
	Tools.		
	1 0015.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual	8	
	Tools,		
	Overlays, Inlays and Virtual Pages, Process Flow. Case		
	Studies.		
6.	Recent Trends: Speech Recognition and Translation,	3	
	Multimodal System		

Text book and Reference books:

- 1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett
- 2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security, Addison Wesley.

Subject: No	eural Networks				
Course Code: OECAIML-		Semester: VI			
601C					
Duration: 3	36	Maximum Marks: 100			
Teaching S		Examination Scheme			
Theory: 3 l	Hrs./week	End Semester Exam: 70			
Tutorial: 0		Attendance: 5			
Practical:		Continuous Assessment:25			
Credit: 3					
Aim:					
Sl. No.					
1.	Develop algorithms simu	•			
2.	Implement Neural Netwo	orks in Tensor Flow for solving problems.			
3.	Explore the essentials of	Deep Learning and Deep Network architectures	res.		
4.	Define, train and use a De	p Neural Network for solving real world problems thatrequire			
	artificial Intelligence base	ed solutions.		•	
Objective:					
Sl. No.					
1.	To acquire knowledge on	the basics of neural networks.			
2.	To implement neural nety	works using computational tools for variety of pa	roblems.		
3.	To explore various deep l	earning algorithms.			
Pre-Requis	ite:				
Sl. No.					
1.	Calculus, Linear Algebra				
2.	Probability & Statistics				
3.	Ability to code in R/Pyth	on			
, , ,			Hrs./we	ek	
Chapter	Name of the Topic		Hours	Marks	
01	Introduction		3	5	
	Various paradigms of	Eearning problems, Perspectives and			
		g framework, review of fundamentallearning			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

02	Feed forward neural network	6	10
	Artificial Neural Network, activation function, multi-layer neural network, cardinality, operations, and properties of fuzzyrelations.		
03	Training Neural Network Risk minimization, loss function, backpropagation, regularization, model selection, and optimization.	6	15
04	Conditional Random Fields Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.	9	15
05	Deep Learning Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, RecurrentNeural Network, Deep Belief Network.	6	15
06	Deep Learning research Object recognition, sparse coding, computer vision, naturallanguage	6	10
	Sub Total:	36	70
	Internal Assessment Examination & Preparation of Semester Examination	4	30
	Total:	40	100

List of Books Text Books:

Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher
Goodfellow,	Deep Learning		MIT Press
I.,Bengio,Y.,and			
Courville A.,			
Satish Kumar	Neural Networks: A		Tata McGraw-Hill
	Classroom Approach		
Reference Books:			
Bishop, C.,M.	Pattern Recognition		Springer
	and Machine Learning		
Yegnanarayana, B.	Artificial Neural		PHI Learning Pvt. Ltd
	Networks		
Golub, G.,H., and	Matrix Computations		JHU Press
VanLoan,C.,F.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Name of the Course:	Cryptography & 1	Cryptography & Network Security		
Course Code:	Semester: VI	Semester: VI		
OEC-AIML 601D				
Duration: 6 months	Maximum Mark	s: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam: 70 Marks		
Credit Points:	3			

Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security, Classical Encryption Techniques, Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor Machines, Steganography, Cryptographic Tools, Confidentiality with Symmetric Encryption, Message Authentication and Hash Functions, Public-Key Encryption, Digital Signatures and Key Management, Random and Pseudorandom Numbers, Practical Application: Encryption of Stored Data, User Authentication, Means of Authentication, Password-Based Authentication, Token-Based Authentication, Biometric Authentication, Remote User Authentication, Security Issues for User Authentication, Malicious Software, Types of Malicious Software (Malware), Propagation—Infected Content—Viruses, Propagation—Vulnerability Exploit—Worms, Propagation—Social Engineering—SPAM Email, Trojans, Payload—System Corruption, Payload—Attack Agent—Zombie, Bots, Payload—Information Theft—Key loggers, Phishing, Spyware, Payload—Stealthing—Backdoors, Rootkits, Countermeasures, Firewalls and Intrusion Prevention Systems, the Need for Firewalls, Firewall Characteristic, Types of Firewalls, Firewall Basing, Firewall Location and Configurations, Intrusion Prevention Systems.

Text Books:

- 1. Cryptography and Network Security: Principles and Practice by William Stalings 6th Edition published by PHI (2011)
- 2. Computer security principles and practice, William Stallings, Lawrie Brown, third edition, Prentice-Hall, 2011
- 3. Cryptography and Network Security, V.K. Jain, Khanna Publishing House

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

SEMESTER - VII

Quantum Computing Code: PEC- AIML701C

Contacts: 3L

Name of the Course: Quan		ntum Computing	
Course Code: PEC- AIML701C	Sei	Semester: VII	
Duration: 6 months	Ma	ximum Marks:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points: 3			

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Qubit & Quantum States: The Qubit, Vector Spaces. Linear	3	
1	Combination Of Vectors, Uniqueness of a spanning set, basis &		
	dimensions, inner Products, orthonormality, gram-schmidt		
	orthogonalization, bra-ket formalism, the Cauchyschwarez and		
	triangle Inequalities.		
	Matrices & Operators: Observables, The Pauli Operators, Outer	10	
2	Products, The Closure Relation, Representation of operators using		
	matrices, outer products & matrix representation, matrix		
	representation of operators in two dimensional spaces, Pauli		
	Matrix, Hermitian unitary and normal operator, Eigen values &		
	Eigen Vectors, Spectral Decomposition, Trace of an operator,		
	important properties of Trace, Expectation Value of Operator,		
	Projection Operator, Positive Operators,		
	Commutator Algebra, Heisenberg uncertainty principle, polar		
3.	decomposition &singular values, Postulates of Quantum	5	
	Mechanics.		
		_	
4.	Tensor Products: Representing Composite States in Quantum	5	
	Mechanics, Computing inner products, Tensor products of		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	column vectors, operators and tensor products of Matrices. Density Operator: Density Operator of Pure & Mix state, Key Properties, Characterizing Mixed State, Practical Trace & Reduce Density Operator, Density Operator & Bloch Vector.		
5.	Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	8	
6.	Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic Programming.	6	

Text book and Reference books:

Quantum Computing without Magic by Zdzislaw Meglicki

- 2. Quantum Computing Explained By DAVID Mc MAHON
- 3. Quantum Computer Science By Marco Lanzagorta, Jeffrey Uhlmann
- 4. An Introduction to Quantum Computing Phillip Kaye, Raymond Laflamme, Michele Mosca.

Subject:	Computer Vision		
Course C	Code: PEC-AIML 701B	Semester: VII	
Duration	n: 36 Hrs.	Maximum Marks: 100	
Teaching	g Scheme	Examination Scheme	
Theory:	3 hrs./week	End Semester Exam: 70	
Tutorial	: 0	Attendance : 5	
Practical:		Continuous Assessment:25	
Credit: 3			
Aim:			
Sl. No.			
1.	Students will learn basic principles of image formation, image processing algorithms and different algorithms for reconstruction and recognition from single or multiple images		
Objectiv	e:		
Sl. No.			
1.	To implement fundamental image processing techniques required for computer vision		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

2.	Understand Image formation process		
3.	Extract features form Images and do analysis of Images		
	To develop applications using computer vision techniques		
Pre-Requ	uisite:		
Sl. No.			
1.	Programming		
2.	Mathematic course		
Contents		Hrs./we	ek
Chapter	Name of the Topic	Hours	Marks
01	Overview, computer imaging systems, lenses, Image formation and sensing, Image analysis, pre-processing and Binary image analysis	3	10
02	Edge detection, Edge detection performance, Hough transform, corner detection	6	10
03	Segmentation, Morphological filtering, Fourier transform	3	10
04	Feature extraction, shape, histogram, color, spectral, texture, using CVIPtools, Feature analysis, feature vectors, distance /similarity measures, data preprocessing	9	10
05	Pattern Analysis:	9	20
	Clustering: K-Means, K-Medoids, Mixture of Gaussians		
	Classification: Discriminant Function, Supervised, Un-supervised, Semisupervised		
	Classifiers: Bayes, KNN, ANN models; Dimensionality Reduction: PCA,LDA, ICA, and Non-parametric methods.		
06	Recent trends in Activity Recognition, computational photography, Biometrics	6	10
	Sub Total:	36	70
	Internal Assessment Examination & Preparation of Semester Examination	4	30
	Total:	40	100
	ents: the curriculum as covered by subject teacher. ooks Text Books:		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher
Richard Szeliski	Computer Vision: Algorithms and Applications		
Goodfellow, Bengio,and Courville	Deep Learning		
Reference Books:			
Fisher et al	. Dictionary of ComputerVision and Image Processing		

Multi-agent Intelligent Systems

Code: PEC- AIML701D

Contacts: 3L

Name of the Course:	Multi-agent Intelligent Systems		
Course Code: PEC-	Semester: VII		
AIML701D			
Duration:6 months	Maximum Marks	s: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
T 1 NIII		10:10	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: what is an agent?: agents and objects; agents and expert systems; agents and distributed systems; typical application areas for agent systems.	3	
2	Intelligent Agents: the design of intelligent agents - reasoning agents (eg AgentO), agents as reactive systems (eg subsumption architecture); hybrid agents (eg PRS); layered agents (eg Interrap) a contemporary (Java-based) framework for programming agents (eg the Jack language, the JAM! system).	9	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	Multi-Agent Systems: Classifying multi-agent	12	
3	interactions - cooperative versus non-cooperative;		
	zero-sum and other interactions; what is cooperation?		
	how cooperation occurs - the Prisoner's dilemma and		
	Axelrod's experiments; Interactions between self-		
	interested agents: auctions & voting systems:		
	negotiation; Interactions between benevolent agents:		
	cooperative distributed problem solving (CDPS),		
	partial global planning; coherence and coordination;		
	Interaction languages and protocols: speech acts,		
	KQML/KIF, the FIPA framework.		
	Advanced topics: One issue selected from the	9	
4.	contemporary research literature, perhaps by guest		
	lecturer.		

Text book and Reference books:

- 1. An Introduction to Multi Agent Systems Second Edition. Michael Wooldridge (Wiley, 2009)
- 2. Programming Multi-agent Systems in Agent Speak Using Jason. Rafael H. Bordini, Jomi Fred Hubner and Michael Wooldridge (Wiley, 2007)

Information Theory and Coding Code: PEC- AIML702B

Contact: 3L

Name	e of the Course:	Information Theory and Coding				
	se Code: PEC- L702B	Semester: VII				
Dura	tion: 6 months	Maximum Marks: 1	.00			
Teaching Scheme Examin			Examina	nation Scheme		
Theo	ry: 3 hrs./week		Mid Semester exam: 15			
Tuto	rial: NIL		Assignm	ent and Quiz: 10 marks		
	Atter			ce: 5 marks		
Pract	ical:NIL		End Sem	ester Exam: 70 Ma	ırks	
Credi	it Points:	3				
Unit	t Content			Hrs/Unit	Marks/Unit	
	Source Coding [7L]					
1	Uncertainty and information, average mutual information and entropy, information measures for continuous random variables, source coding			7		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	theorem, Huffman codes		
	Channel Capacity And Coding [7L]	7	
2	Channel models, channel capacity, channel coding,		
	information capacity theorem, The Shannon limit		
	Linear And Block Codes For Error	8	
3	Correction [8L]		
	Matrix description of linear block codes, equivalent		
	codes, parity check matrix, decoding of a linear		
	block code, perfect codes, Hamming codes	_	
	Cyclic Codes [7L]	7	
4.	Polynomials, division algorithm for		
	polynomials, a method for generating		
	cyclic codes, matrix description of		
	cyclic codes, Golay codes		
	DCH C 1 (01)	0	
5	BCH Codes [8L] Primitive elements, minimal	8	
	,		
	polynomials, generator polynomials in terms of minimal polynomials,		
	examples of BCH codes.		
	examples of Berr codes.		
6	Convolutional Codes [8L]	8	
	Tree codes, trellis codes, polynomial		
	description of convolutional codes,		
	distance notions for convolutional		
	codes, the generating function, matrix		
	representation of convolutional codes,		
	decoding of convolutional codes,		
	distance and performance bounds for		
	convolutional codes, examples of		
	convolutional codes, Turbo codes,		
	Turbo decoding		

Text book and Reference books:

- 1. Information theory, coding and cryptography Ranjan Bose; TMH.
- 2. Information and Coding N Abramson; McGraw Hill.
- 3. Introduction to Information Theory M Mansurpur; McGraw Hill.
- 4. Information Theory R B Ash; Prentice Hall.
- 5. Error Control Coding Shu Lin and D J Costello Jr; Prentice Hall.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Digital Signal Processing Code: PEC- AIML701D

Contacts: 3L

Name of the Course:	Digital Sig	nal Processing
Course Code: PEC- AIML701D	Semester: V	VII .
Duration:6 months	Maximum 1	Marks: 100
Teaching Scheme	·	Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	·

	t Points: 3		
Unit	Content	Hrs/Unit	Marks/Unit
1	Module 1: Discrete-time signals and systems (6 hours) Discrete time signals and systems: Sequences; representation of signals on orthogonal basis; Representation of discrete systems using difference equations, Sampling and reconstruction of signals - aliasing; Sampling theorem and Nyquist rate.	6	
2	Module 2: Z-transform (6 hours) z-Transform, Region of Convergence, Analysis of Linear Shift Invariant systems using z transform, Properties of z-transform for causal signals, Interpretation of stability in z-domain, Inverse z-transforms.	6	
3	Module 2: Discrete Fourier Transform (10 hours) Frequency Domain Analysis, Discrete Fourier Transform (DFT), Properties of DFT, Convolution of signals, Fast Fourier Transform Algorithm, Parseval's Identity, Implementation of Discrete Time Systems.	10	
4.	Module 3:Designof Digital filters (12 hours) Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Low-pass, Band-pass, Band stop and High-pass filters. Effect of finite register length in FIR filter design. Parametric and non-parametric spectral estimation. Introduction to multi-rate signal processing.	12	
	Module 4: Applications of Digital Signal Processing (6 hours) Correlation Functions and Power Spectra, Stationary Processes, Optimal filtering using ARMA Model, Linear Mean-Square Estimation, Wiener Filter.	6	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Text book and Reference books:

- 1. S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill, 2011.
- 2. A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989.
- 3. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 1997.
- 4. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
- 5. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
- 6. D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley & Sons, 1988.

Subject Name: SOCIAL NETWORK ANALYSIS

Code- PECAIML701A Contact hrs. /week: 3

Credit: 3

Introduction to Social Web, Nodes, Edges and Network Measures, Describing Nodes and Edges, Describing Networks, Layouts, Visualizing network features, The role of Tie strength, Measuring Tie strength and its network structures, network propagation, Link prediction, entity resolution, Case study, Introduction to community discovery, communities in context, quality functions, The Kernighan-Lin algorithm, Agglomerative algorithms, spectral algorithms, multi-level graph partitioning, Markov clustering, Other approaches, Introduction to social influence, Influence related statistics, social similarity and influence, Homophily, Existential Test for social influence, Influence and actions, Influence and interactions, influence maximization in viral marketing.

References:

- 1. Jennifer Golbeck., Analysing the Social Web, Morgan Kaufmann publications, 2013
- 2. Charu C. Aggarwal, Social Network Data Analytics, Springer publications, 2011
- 3. John Scott, Social Network Analysis, (3e), Sage publications limited, 2013
- 4. Jay Goldman, Facebook Cookbook, O'Reilly, 2009
- 5. Shamanth Kumar, Fred Morstatter, Huan Liu, Twitter Data Analytics, Springer publications, 2013

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

E-Commerce & ERP: Code: PEC-AIML 702A Contacts: 3L

- 1. Overview, Definitions, Advantages & Disadvantages of E Commerce, Threats of E Commerce, Managerial Prospective, Rules & Regulations For Controlling E Commerce, Cyber Laws. [3 L]
- 2. Technologies: Relationship Between E Commerce & Networking, Different Types of Networking Commerce, Internet, Intranet & Extranet, EDI Systems Wireless Application Protocol: Definition, Hand Held Devices, Mobility & Commerce, Mobile Computing, Wireless Web, Web Security, Infrastructure Requirement For E Commerce. [5 L]
- 3. Business Models of e commerce : Model Based On Transaction Type, Model Based On Transaction Party B2B, B2C, C2B, C2C, E Governance. [2 L]
- 4. E strategy : Overview, Strategic Methods for developing E commerce. [2 L]
- 5. Four C's: (Convergence, Collaborative Computing, Content Management & Call Center). Convergence: Technological Advances in Convergence Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing: Collaborative product development, contract as per CAD, Simultaneous Collaboration, Security. Content Management: Definition of content, Authoring Tools & Content Management, Content partnership, repositories, convergence, providers, Web Traffic & Traffic Management; Content Marketing. Call Center: Definition, Need, Tasks Handled, Mode of Operation, Equipment, Strength & Weaknesses of Call Center, Customer Premises Equipment (CPE). [6 L]
- 6. Supply Chain Management : E logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP Tools), Supply Chain Execution (SCE), SCE Framework, Internet's effect on Supply Chain Power. [3 L]
- 7. $E-Payment\ Mechanism: Payment\ through\ card\ system,\ E-Cheque,\ E-Cash,\ E-Payment\ Threats\ \&\ Protections.\ [\ 1\ L\]$
- 8. E Marketing :. Home –shopping, E-Marketing, Tele-marketing [1 L]
- 9. Electronic Data Interchange (EDI): Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X 12), Data Encryption (DES / RSA). [2 L] 10. Risk of E Commerce: Overview, Security for E Commerce, Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital certificates, Digital signatures. [4 L]
- 11. Enterprise Resource Planning (ERP): Features, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse. Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, QualityManagement, Sales&Distribution ERPPackage, ERP Market: ERP Market Place, SAP AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP-Present and Future: Enterprise Application Integration (EAI), ERP and E-Commerce, ERP and Internet, Future Directions in ERP [10]

Reference:

- 1. E-Commerce, M.M. Oka, EPH
- 2. Kalakotia, Whinston: Frontiers of Electronic Commerce, Pearson Education.
- 3. Bhaskar Bharat: Electronic Commerce Technologies & Applications. TMH
- 4. Loshin Pete, Murphy P.A.: Electronic Commerce, Jaico Publishing Housing.
- 5. Murthy: E Commerce, Himalaya Publishing.
- 6. E Commerce : Strategy Technologies & Applications, Tata McGraw Hill.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

- 7. Global E-Commerce, J. Christopher & T.H.K. Clerk, University Press
- 8. Beginning E-Commerce, Reynolds, SPD
- 9. Krishnamurthy, E-Commerce Mgmt, Vikas

Internet of Things

Code: OEC-AIML 701A

Contacts: 3L

Course Code	OEC-AIML 701A
Course Name	Internet of Things
Credits	3
Pre-Requisites	Wireless Networks
LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1: Environmental Parameters Measurement and Monitoring: Why measurement and monitoring are important, effects of adverse parameters for the living being for IOT	7
Unit 2: Sensors: Working Principles: Different types; Selection of Sensors for Practical Applications Introduction of Different Types of Sensors such as Capacitive, Resistive, Surface Acoustic Wave for Temperature, Pressure, Humidity, Toxic Gas etc	8
Unit 3: Important Characteristics of Sensors: Determination of the Characteristics Fractional order element: Constant Phase Impedance for sensing applications such as humidity, water quality, milk quality Impedance Spectroscopy: Equivalent circuit of Sensors and Modelling of Sensors Importance and Adoption of Smart Sensors	11
Unit 4: Architecture of Smart Sensors: Important components, their features Fabrication of Sensor and Smart Sensor: Electrode fabrication: Screen printing, Photolithography, Electroplating Sensing film deposition: Physical and chemical Vapor, Anodization, Sol-gel	10
Unit 5: Interface Electronic Circuit for Smart Sensors and Challenges for Interfacing the Smart Sensor, Usefulness of Silicon Technology in Smart Sensor And Future scope of research in smart sensor	7
Unit 6: Recent trends in smart sensor for day to day life, evolving sensors and their architecture.	5

References:

- 1. Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L., Smart Sensors at the IoT Frontier, Springer International Publishing
- 2. Kyung, C.-M., Yasuura, H., Liu, Y., Lin, Y.-L., Smart Sensors and Systems, Springer International Publishing
- 3. Jeeva Jose, Internet of Things, Khanna Publishing House.
- 4. Internet of Things, Arsheep Bahga and Vijay Madisetti

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

Subject: E	Bioinformatics					
Course Co	de: OECAIML 701B	Semester: VII				
Duration: 36 Hrs.		Maximum Marks: 100				
Teaching Scheme Examination Scheme						
Theory: 3h	nrs./week	End Semester Exam: 70				
Tutorial:		Attendance : 5				
Practical:	0	Continuous Assessment: 25				
Credit:3		Practical Sessional internal continuous	evaluatio	on: NA		
		Practical Sessional external examination	n: NA			
Aim:						
Sl. No.						
1.	Emphasis will be given to problem solving in real res	<u> </u>	cal databa	ses to		
2.		familiar with the use of a wide variety of inter ill be able to apply these methods to research p		ations,		
Objective	2:					
Sl. No.	After completion of the co	ourse, students will be able to:				
1.	Describe the contents and properties of the most important bioinformatics databases, perform text- and sequence-based searches, and analyze and discuss the results in light of molecular biological knowledge					
2.	for, and execute pairwise s	pairwise and multiple sequence alignment, exequence alignment by dynamic programming	plain the	principle		
3.		tertiary structures of protein sequences.				
Contents	1		3 Hrs./v	veek		
Chapter	Name of the Topic		Hours	Marks		
01	Functions of different org of DNA; Double Helix str Introns and Gene Conce Difference between RNA Protein: Basic componer Dogma: Transcription and Pathways	types of cell, components of cell, organelle. ganelles. Concepts of DNA: Basic Structure ructure; Watson and crick model. Exons and ept. Concepts of RNA: Basic structure, A and DNA. Types of RNA. Concept of and structure. Introduction to Central Tranlation Introduction to Metabolic	7	12		
02	sequence databases. seque and FASTA. NCBI differe browser, PubMed;	atics. Protein Sequence Databases, DNA ence database search programs like BLAST ent modules: GenBank; OMIM, Taxonomy	7	14		
03	Technology) Up to Fourth Mapping and Assembly:	LYSIS 14 Syllabus for B.Tech(Information of Year Revised Syllabus of B.Tech IT DNA Size of Human DNA, Copying DNA: on (PCR), Hybridization and Microarrays,	8	18		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	Total:	40	100
	Examination		
	Internal Assessment Examination & Preparation of Semester	4	30
	Sub Total:	36	70
05	Biological Data Classification and Clustering 6 Assigning protein function and predicting splice sites: Decision Tree	7	14
	Bioinformatics.		
	sequence alignment and regulatory site identification. Bayesian networks Model: Architecture, Principle, Application in		
	HMM in Bioinformatics : Genefinding, profile searches, multiple		
	Architecture, Transition matrix, estimation matrix. Application of	1	
0 1	Probabilistic Models; Hidden Markov Model : Concepts,		
04	Introduction Probabilistic models used in Computational Biology 8	7	12
	algorithms: Needleman and Wunsch algorithm, Smith-Waterman.		
	Alignment: Introduction, local and global alignment, pair wise and multiple alignment, Dynamic Programming Concept. Alignment		
	Mapping Long DNA Molecules. DeBruijn Graph. Sequence	1	
	Cutting DNA into Fragments, Sequencing Short DNA Molecules,	1	

List of Books

Text Books:

	I	
Title of the Book	Edition/ISSN/ISBN	Name of the
		Publisher
or), Bioinformatics:	ISBN: 978-	Oxford University
Sequence, Structure	0199637904.	Press.
and Databanks: A	1st edition,	
Practical Approach		
Bioinformatics:	ISBN: 978-0879697129	Cold spring harbor
Sequence and Genome		laboratory press.
Analysis	2nd edition,	
:		
Introduction to	ISBN: 978-8178085074	Pearson Education.
Bioinformatics	1st edition	
Bioinformatics: A	ISBN: 978-	John Wiley & Sons,
Practical Guide to	0471478782.	Inc., Publication.
the Analysis of	Second Edition	
Genes and Proteins	Second Edition,	
amination Scheme. Ma	ximum Marks-70. T	ime allotted-3hrs.
Objective Questions	Subjective	Questions
(MCQ only with the		
correct answer)		
	or), Bioinformatics: Sequence, Structure and Databanks: A Practical Approach Bioinformatics: Sequence and Genome Analysis : Introduction to Bioinformatics Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins amination Scheme. Ma Objective Questions	or), Bioinformatics: Sequence, Structure and Databanks: A Practical Approach Bioinformatics: Sequence and Genome Analysis Introduction to Bioinformatics: Bioinformatics: Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins IsBN: 978-0879697129 Introduction to ISBN: 978-8178085074 1st edition ISBN: 978-0471478782. Second Edition, Tobjective Questions (MCQ only with the

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

		No of question to be set	Total Marks	No of question to be set	To answer	Marks per question	Total Marks
Α	1 to 5	10	10				
В	1 to 5			5	3	5	60
С	1 to 5			5	3	15	

- Only multiple choice type questions (MCQ) with one correct answer are to be set in the objective part.
- Specific instruction to the students to maintain the order in answering objective questions should be given on top of the question paper.

Examination Scheme for end semester examination:

Group	Chapter	Marks of each question	Question to be set	Question to be answered
Α	All	1	10	10
В	All	5	5	3
С	All	15	5	3

Robotics

Code: OEC-AIML 701C

Contacts: 3L

Name of the Course: Ro		obotics	
Course Code: OEC-AIML 701C Ser		emester: VII	
Duration: 6 months	Ouration: 6 months Maximum Marks: 100		
Teaching Scheme	·	Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL End Semester Exam: 70 Marks		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction : Introduction brief history, types, classification and usage, Science and Technology of robots, Some useful websites, textbooks and research journals.	1	
2	Elements of robots – links, joints, actuators, and sensors Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link	5	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

	representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.		
3	Kinematics of serial robots Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.	4	
4.	Kinematics of parallel robots Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.	5	
5.	Velocity and static analysis of robot manipulators Linear and angular velocity of links, Velocity propagation, Manipulator Jacobians for serial and parallel manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and parallel manipulators, Loss and gain of degree of freedom, Statics of serial and parallel manipulators, Statics and force transformation matrix of a Gough-Stewart platform, Singularity analysis and statics.	5	
6	Dynamics of serial and parallel manipulators Mass and inertia of links, Lagrangian formulation for equations of motion for serial and parallel manipulators, Generation of symbolic equations of motion using a computer, Simulation (direct and inverse) of dynamic equations of motion, Examples of a planar 2R and four-bar mechanism, Recursive dynamics, Commercially available multi-body simulation software (ADAMS) and Computer algebra software Maple.	4	
7	Motion planning and control Joint and Cartesian space trajectory planning and generation, Classical	6	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	control concepts using the example of control of a single link, Independent joint PID control, Control of a multilink manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-		
	linear control of manipulators. 8 Module 8: Modeling and		
8	Modeling and control of flexible robots Models of flexible links and joints, Kinematic modeling of multilink flexible robots, Dynamics and control of flexible link manipulators, Numerical simulations results, Experiments with a planar two-link flexible manipulator.	4	
9	Modeling and analysis of wheeled mobile robots 3Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three-wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.	3	
10	Selected advanced topics in robotics Introduction to chaos, Non-linear dynamics and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical criterion for unforced motion. Gough-Stewart platform and its singularities, use of near singularity for fine motion for sensing, design of Gough-Stewart platform based sensors. Over-constrained mechanisms and deployable structures, Algorithm to obtain redundant links and joints, Kinematics and statics of deployable structures with pantographs or scissor-like elements (SLE's).	3	

Text book and Reference books:

- 1. Robotics Process Automation, Khanna Publishing House
- 2. Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014
- 3. Ghosal, A., "Robotics", Oxford, New Delhi, 2006.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

Compiler Design Code: OEC-AIML 701D

Contact: 3L

Name of the Course: Co		Compiler Design	
Course Code: OEC-AIML 701D Semester:		VII	
Duration:6 months	Maximum Marks:100		
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Compiling [3L]		
1	Compilers, Analysis of the source program, The	3	
	phases of the compiler, Cousins of the compiler.		
2	Lexical Analysis [6L] The role of the lexical analyzer, Tokens, Patterns, Lexemes, Input buffering, Specifications of a token, Recognition of a tokens, Finite automata, From a regular expression to an NFA, From a regular expression to NFA, From a regular expression to DFA, Design of a lexical analyzer generator (Lex).	6	
3	Syntax Analysis [9L] The role of a parser, Context free grammars, Writing a grammar, Top down Parsing, Non- recursive Predictive parsing (LL), Bottom up parsing, Handles, Viable prefixes, Operator precedence parsing, LR parsers (SLR, LALR), Parser generators (YACC). Error Recovery strategies for different parsing techniques.	9	
4	Syntax directed translation [5L] Syntax director definitions, Construction of syntaxtrees, Bottom-up evaluation of S attributed definitions, L attributed definitions, Bottom-up evaluation of inherited attributes.	5	
5	Type checking [4L] Type systems, Specification of a simple type checker, Equivalence of type expressions, Type conversions	4	

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

6	Run time environments [5L]	5	
	Source language issues (Activation trees, Controlstack,		
	scope of declaration, Binding of names),		
	Storage organization		
	(Subdivision of run-time memory, Activation records),		
	Storage allocation strategies, Parameterpassing (call by		
	value, call by reference, copy restore, call by name),		
	Symbol tables, dynamic storage allocation techniques.		
7	Intermediate code generation [4L]	4	
	Intermediate languages, Graphical representation, Three-		
	address code, Implementation of three address statements		
	(Quadruples, Triples, Indirect triples).		
8	Code optimization [5L]	5	
	Introduction, Basic blocks & flow graphs, Transformation		
	of basic blocks, Dag representation of basic blocks, The		
	principle sources of optimization, Loops in flowgraph,		
	Peephole optimization.		
9	Code generations [4L]	4	
	Issues in the design of code generator, a simple code		
	generator, Register allocation & assignment.		

Text book and Reference books:

- 1. Aho, Sethi, Ullman "Compiler Principles, Techniques and Tools" Pearson Education.
- 2. Holub "Compiler Design in C" PHI.

Project Management and Entrepreneurship

Code: HSMC 701 Contact: 2L

Name of the Course: Project Management and Entrepreneurship		nt and Entrepreneurship		
Course Code: HSMC 701 Semester: VII				
Duration: 6 months	Maximum Marks:	100		
Teaching Scheme		Examination Scheme		
Theory: 2 hrs./week		Mid Semester exam: 15		
Tutorial: 1hr		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam: 70 Marks		
Credit Points: 2				

ENTREPRENEURSHIP

- 1. Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk-opportunities perspective and mitigation of risks [2L]
- 2. Entrepreneurship An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur [2L]

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

- 3. Idea Incubation: Factors determining competitive advantage, Market segment, blue ocean strategy, Industry and Competitor Analysis (market structure, market size, growth potential), Demand-supply analysis [4L]
- 4. Entrepreneurial Motivation: Design Thinking Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship Theory of McClelland, Harvesting Strategies [2L]
- 5. Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L]
- 6. Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L]
- 7. Applications and Project Reports Preparation [4L]
- 8. PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L]
- 9. Project Feasibility Studies Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L]
- 10. Project Planning Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L]
- 11. Project Scheduling and Costing Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction Methods. [6L]
- 12. Project Monitoring and Control Role of Project Manager, MIS in Project Monitoring, Project Audit [2L]
- 13. Case Studies with Hands-on Training on MS-Project [4L]

Text Books and References

- 1. Innovation and Entrepreneurship by Drucker, P.F.; Harper and Row
- 2. Business, Entrepreneurship and Management: Rao, V.S.P.; Vikas
- 3. Entrepreneurship: Roy Rajeev; OUP.
- 4. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan
- 5. Project Management for Engineering, Business and Technology: Nicholas, J.M., and Steyn, H.; PHI
- 6. Project Management: The Managerial Process: Gray, C.F., Larson, E.W. and Desai, G.V.; MGH

Project-I

Code: PROJ-AIML 781

Contact: 12P Credit-6

Project work I

The object of Project Work I is to enable the student to take up investigative study

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work.

SEMESTER - VIII

Natural Language Processing Code: PEC-AIML 801A

Name of the Course:	Natural Language Processing		
Course Code: PEC-AIML 801A	Semester: VII	II	
Duration: 6 months	Maximum Ma	arks:100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical:NIL		End Semester Exam :70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Regular Expressions and AutomataRecap) - Introduction to NLP, Regular Expression, Finite State Automata [2L] Tokenization - Word Tokenization, Normalization, Sentence Segmentation, Named Entity Recognition, Multi Word Extraction, Spell Checking – Bayesian Approach, Minimum Edit Distance [5L] Morphology - Morphology – Inflectional and Derivational Morphology, Finite State Morphological Parsing, The Lexicon and Morphotactics, Morphological Parsing with Finite State Transducers, Orthographic Rules and Finite State Transducers, Porter Stemmer [4L]	11	
2	Language Modeling Introduction to N-grams, Chain Rule, Smoothing – Add-One Smoothing, Witten-Bell Discounting; Backoff, Deleted Interpolation, N-grams for Spelling and Word Prediction, Evaluation of language models. [4L] Hidden Markov Models and POS Tagging Markov Chain, Hidden Markov Models, Forward Algorithm, Viterbi Algorithm, Part of Speech Tagging – Rule based and Machine Learning based approaches, Evaluation. [4L]	8	

3	Text Classification Text Classification, Naïve Bayes' Text Classification, Evaluation, Sentiment Analysis – Opinion Mining and Emotion Analysis, Resources and Techniques.	9	
	[4L] Context Free Grammar Context Free Grammar and		
	Constituency, Some common CFG phenomena for		
	English, Top-Down and Bottom-up parsing, Probabilistic Context Free Grammar, Dependency Parsing [4L]		
	Computational Lexical Semantics Introduction to Lexical		
4.	Semantics – Homonymy, Polysemy, Synonymy, Thesaurus – WordNet, Computational Lexical Semantics – Thesaurus based and Distributional Word Similarity [4L]	9	
	Information Retrieval Boolean Retrieval, Term- document incidence, The Inverted Index, Query Optimization, Phrase Queries, Ranked Retrieval – Term Frequency – Inverse Document Frequency based ranking, Zone Indexing, Query term proximity, Cosine ranking, Combining different features for ranking, Search Engine Evaluation, Relevance Feedback [5L]		

Text book and Reference books:

- 1. Speech and Language Processing, Jurafsky and Martin, Pearson Education
- 2. Foundation of Statistical Natural Language Processing, Manning and Schutze, MIT Press 3. Multilingual Natural Language Processing Applications from Theory to Practice: Bikel, Pearson.

Cyber Law and Ethics Code: PEC-AIML801B

Name of the Course: Cyber		Law and Ethics	
Course Code: PEC-AIML801B		Semester: VIII	
Duration:6 months Max		aximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points: 3			

Unit Content	Hrs/Unit Marks/Unit
--------------	---------------------

			—
	Intellectual Property: Intellectual property, copyrights,		
1	patents, trade secrets and its laws, employees and trade	8	
	secret, key intellectual property issues, plagiarism,		
	reverse engineering, open source code, competitive		
	intelligence, trademark infringement, cybersquatting.		
	Software Development: Strategies for engineering		
2	quality software, importance of software quality,	8	
	software product liability, software development		
	process, capability maturity model integration, safety		
	critical system, quality management standards.		
	The Impact of Information Technology on		
3	Productivity and	8	
	Quality of Life: Impact of IT, IT investment and		
	productivity, digital divide, impact of it on healthcare		
	cost, electronic health records, use of mobile and		
	wireless technology in healthcare industry,		
	telemedicine, medical information websites.		
	Social Networking: Social networking website,		
4.	business Application of online social networking,	8	
	social networking ethical issues: cyberbullying, cyber		
	stalking, sexual predators, uploading inappropriate		
	material. Online virtual world: crime in virtual world,		
	educational and business uses.		
5	Ethics of IT Organization: Key ethical issues, non-	8	
	traditional		
	Workers, contingent workers, H-1 B workers,		
	outsourcing, whistle blowing, green computing, ICT		
	industry code of conduct.		

Text book and Reference books:

- 1. "Ethics in Information Technology", 4th Edition, George Reynolds Strayer University, 2012.
- 2. "Ethics and Technology: Controversies, Questions, and Strategies for Ethical Computing", 3rd Edition, Herman T. Tavani, John Wiley & Sons, 2011.
- 2. "Information Technology Ethics: Cultural Perspectives", Soraj Hon ladarom, Charles Ess, Idea GroupInc (IGI), 2007.

Mobile Computing Code: PEC- AIML801C

Name of the Course: Mo		obile Computing	
Course Code: PEC- AIML801C Sen		emester: VIII	
Duration: 6 months Ma		Iaximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: 3L		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction to Personal Communications Services (PCS): PCS Architecture, Mobility management, Networks signalling. Global System for Mobile Communication (GSM) system overview: GSM Architecture, Mobility management, Network signalling.	5	
2	General Packet Radio Services (GPRS): GPRS Architecture, GPRS Network Nodes. Mobile Data Communication: WLANs (Wireless LANs) IEEE 802.11 standard, Mobile IP.	5	
3	Wireless Application Protocol (WAP): The Mobile Internet standard, WAP Gateway and Protocols, wireless mark up Languages (WML). Wireless Local Loop(WLL): Introduction to WLL Architecture, wireless Local Loop Technologies.	7	
4.	Third Generation (3G) Mobile Services: Introduction to International Mobile Telecommunications 2000 (IMT 2000) vision, Wideband Code Division Multiple Access (W-CDMA), and CDMA 2000, Quality of services in 3G	7	
5	Global Mobile Satellite Systems; case studies of the IRIDIUM and GLOBALSTAR systems. Wireless Enterprise Networks: Introduction to Virtual Networks, Blue tooth technology, Blue tooth Protocols.	7	
6	Server-side programming in Java, Pervasive web application architecture, Device independent example Application	8	

Text book and Reference books:

- 1. "Pervasive Computing", Burkhardt, Pearson
- 2. "Mobile Communication", J. Schiller, Pearson
- 3. "Wireless and Mobile Networks Architectures", Yi-Bing Lin & Imrich Chlamtac, John Wiley& Sons, 2001
- 4. "Mobile and Personal Communication systems and services", Raj Pandya, Prentice Hall ofIndia, 2001.
- 5. "Guide to Designing and Implementing wireless LANs", Mark Ciampa, Thomson learning, Vikas Publishing House, 2001.
- 6. "Wireless Web Development", Ray Rischpater, Springer Publishing,
- 7. "The Wireless Application Protocol", Sandeep Singhal, Pearson .
- 8. "Third Generation Mobile Telecommunication systems", by P.Stavronlakis, SpringerPublishers,
- 9. Brijesh Gupta "Mobile Computing", Khanna Publishing House, New Delhi

Economic Policies in India Code: OEC- AIML801A

Contacts: 3L

Economic Development and its Determinants

Approaches to economic development and its measurement – sustainable development; Role ofState, market and other institutions; Indicators of development – PQLI, Human Development Index (HDI), genderdevelopment indices.

Planning in India

Objectives and strategy of planning; Failures and achievements of Plans; Developing grass-rootorganizations for development – Panchayats, NGOs and pressure groups.

Demographic Features, Poverty and Inequality

Broad demographic features of Indian population; rural-urban migration; Urbanization and civic amenities; Poverty and Inequality.

Resource Base and Infrastructure

Energy; social infrastructure – education and health; Environment; Regional imbalance; Issues and policies in financing infrastructure development.

The Agricultural Sector

Institutional Structure – land reforms in India; Technological change in agriculture – pricing of agricultural inputs and output;

industry; Agricultural finance policy; Agricultural Marketing and Warehousing; Issues Terms of trade between agriculture

and in food security – policies for sustainable agriculture.

Section - II

Industrial policy; Public Sector enterprises and their performance; Problem of sick units in India;

Privatization and

disinvestment debate; Growth and pattern of industrialization; Small-scale sector; Productivity in industrial sector; Exit

policy – issues in labour market reforms; approaches for employment generation.

Public Finances

Fiscal federalism – Centre-State financial relations; Finances of central government; Finances of state governments; Parallel

economy; Problems relating to fiscal policy; Fiscal sector reforms in India.

Money, Banking and Prices

Analysis of price behaviour in India; Financial sector reforms; Interest rate policy; Review of monetary policy of RBI; Money and capital markets; Working of SEBI in India.

External Sector

Structure and direction of foreign trade; Balance of payments; Issues in export-import policy and FEMA; Exchange rate

policy; Foreign capital and MNCs in India; The progress of trade reforms in India.

Economic Reforms

Rationale of internal and external reforms; Globalization of Indian economy; WTO and its impact on the different sectors of the economy; Need for and issues in good governance; Issues in competition and

safety nets in Indian economy.

BASIC READING LIST

- 1. Ahluwalia, I. J. and I. M. D Little (Eds.) (1999), India's Economic Reforms and Development (Essays in honour of Manmohan Singh), Oxford University Press, New Delhi.
- 2. Bardhan, P. K. (9th Edition) (1999), The Political Economy of Development in India, Oxford University Press, New Delhi.
- 3. Bawa, R. s. and P. S. Raikhy (Ed.) (1997), Structural Changes in Indian Economy, Guru Nanak Dev University Press,

Amritsar.

- 4. Brahmananda, P. R. and V. R. Panchmukhi (Eds.) (2001), Development Experience in the Indian Economy: Inter-State Perspectives, Book well, Delhi.
- 5. Chakravarty, S. (1987), Development Planning: The Indian Experience, Oxford University Press, New Delhi.
- 6. Dantwala, M. L. (1996), Dilemmas of Growth: The Indian Experience, Sage Publications, New Delhi.
- 7. Datt, R. (Ed.) (2001), Second Generation Economic Reforms in India, Deep & Deep Publications, New Delhi.
- 8. Government of India, Economic Survey (Annual), Ministry of Finance, New Delhi.
- 9. Jain, a. K. (1986), Economic Planning in India, Ashish Publishing House, New Delhi.
- 10. Jalan, B. (1992), The Indian Economy Problems and Prospects, Viking, New Delhi.

Micro-electronics and VLSI Design

Code: OEC- AIML801B

Contact: 3L Credits: 3 Allotted Hrs: 39L

Introduction to CMOS circuits: MOS Transistors, MOS transistor switches, CMOS Logic, The inverter, Combinational Logic, NAND gate, NOT Gate, Compound Gates, Multiplexers, Memory-Latches and Registers. [6L]

Processing Technology: Silicon Semiconductor Technology- An Overview, wafer processing, oxidation, epitaxy deposition, Ion-implantation and diffusion, The Silicon Gate Process- Basic CMOS Technology, basic n-well CMOS process, p-well CMOS process, Twin tub process, Silicon on insulator, CMOS process enhancement-Interconnect, circuit elements, 3-D CMOS. Layout Design Rule: Layer Representations, CMOS n-well Rules, Design Rule of background scribe line, Layer Assignment, SOI Rule [10L].

Power Dissipation: Static dissipation, Dynamic dissipation, short-circuit dissipation, total power dissipation. Programmable Logic, Programmable Logic structure, Programmable interconnect, and Reprogramable Gate Array: Xilinx Programmable Gate Array, Design Methods: Behavioural Synthesis, RTL synthesis [8L]

Placement: placement: Mincut based placement – Iterative improvement placement simulated annealing. Routing: Segmented channel routing – maze routing – routability and routing resources – net delays. [5L]

Verification and Testing: Verification Versus Testing, Verification: logic simulation design validation – timing verification – Testing concepts: failures – mechanisms and faults – fault coverage – ATPG methods – types of tests – FPGAs – programmability failures – design for testability. [5L]

Overview of VHDL [5L]

Text Book:

- 1. "Digital Integrated Circuit", J.M.Rabaey, Chandrasan, Nicolic, Pearson
- 2. "CMOS Digital Integrated Circuit", S.M.Kang & Y.Leblebici, TMH
- 3."Modern VLSI Design" Wayne Wolf, Pearson
- 4."Algorithm for VLSI Design & Automation", N.Sherwani, Kluwer
- 5."VHDL", Bhaskar, PHI

References:

- 1. "Digital Integrated Circuits" Demassa & Ciccone, Willey Pub.
- 2. "Modern VLSI Design: system on silicon" Wayne Wolf; Addison Wesley Longman Publisher
- 3. "Basic VLSI Design" Douglas A. Pucknell & Kamran Eshranghian; PHI
- 4. "CMOS Circuit Design, Layout & Simulation", R.J.Baker, H.W.Lee, D.E. Boyee, PHI

Software Engineering Code:OEC-AIML 801C

Name of the Course:	Software Engineering		
Course Code: OEC-AIML 801C Semester: VI		Π	
Duration:6 months Maximum M		farks:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: hrs./week		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Overview of System Analysis & Design , Business System Concept, System Development Life Cycle, Waterfall Model , Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. [10L]	10	
2	System Design – Context diagram and DFD, Problem Partitioning, Top-Down And Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. [5L]	5	
3	Coding & Documentation – Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. [4L] Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification Metrics, Monitoring & Control. [8L]	12	
4.	Software Project Management – Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring. [7L]	7	
5	Static and dynamic models, why modeling, UML diagrams: Class diagram, interaction diagram: collaboration diagram, sequence diagram, state chart diagram, activity diagram, implementation diagram. [10 L]	10	

Text book and Reference books:

- 1. Pressman, Software Engineering: A practitioner's approach— (TMH)
- 2. Pankaj Jalote, Software Engineering- (Wiley-India)
- 3. N.S. Gill, Software Engineering (Khanna Publishing House)
- 4. Rajib Mall, Software Engineering- (PHI)
- 5. Agarwal and Agarwal, Software Engineering (PHI)
- 6. Sommerville, Software Engineering Pearson
- 7. Martin L. Shooman, Software Engineering TMH

Human Resource Development and Organizational Behavior

Code: OEC-AIML 802 A

Name of the Course:	Human Resource Development and Organizational Behavior	
Course Code: OEC-AIML 802 A	Semester: V	TIII
Duration:6 months	Maximum N	Marks:100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of OB, Challenges and Opportunities for OB. [2] Personality and Attitudes: Meaning of personality, Personality Determinants and Traits, Development of Personality, Types of Attitudes, Job Satisfaction.	4	
2	Perception: Definition, Nature and Importance, Factors influencing Perception, Perceptual Selectivity, Link between Perception and DecisionMaking. [2] 4. Motivation: Definition, Theories of Motivation - Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Y, Herzberg's Motivation-Hygiene Theory, Alderfer's ERG Theory, McClelland's Theory of Needs, Vroom's Expectancy Theory.	8	
3	Group Behaviour: Characteristics of Group, Types of Groups, Stages of Group Development, GroupDecision	4	

	Making. [2] Communication: Communication Process, Directionof Communication, Barriers to Effective Communication. [2] Leadership: Definition, Importance, Theories of		
	Leadership Styles.		
	Organizational Politics: Definition, Factors	8	
4.	contributing to Political Behaviour. [2]		
	Conflict Management: Traditional vis-a-vis ModernView of		
	Conflict, Functional and Dysfunctional Conflict,		
	Conflict Process, Negotiation – Bargaining Strategies,		
	Negotiation Process. [2] Organizational Design: Various		
	Organizational Structures and their Effects on Human		
	Behaviour, Concepts of		
	Organizational Climate and Organizational Culture.		

Text book and Reference books:

- 1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn.
- 2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn.
- 3. Shukla, Madhukar: Understanding Organizations Organizational Theory & Practice in India, PHI
- 4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn.
- 5. Hersey, P., Blanchard, K.H., Johnson, D.E.- Management of Organizational Behavior Leading Human Resources, PHI, 10th Edn.

1111, Tour Earl.

Research Methodology Code: OEC-AIML 802B

Name of the Course:	Research Methodology		
Course Code: OEC-AIML 802B	Semester: VIII		
Duration:6 months	Maximum Marks:100		
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
------	---------	----------	------------

	RESEARCH FORMULATION AND DESIGN	
1	Motivation and objectives – Research methods vs.	9
	Methodology. Types of research – Descriptive vs.	
	Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied	
	and basic research process, criteria of good research.	
	Defining and formulating the research problem, selecting	
	the problem, necessity of defining the problem,	
	importance of literature review in defining a problem,	
	literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source,	
	searching the web, critical literature review, identifying	
	gap areas from literature and research database,	
	development of working hypothesis.	
2	DATA COLLECTION AND ANALYSIS	9
	Accepts of method validation, observation and	
	collection of data, methods of data collection, sampling	
	methods, data processing and analysis strategies and	
	tools,data analysis with statically package (Sigma	
	STAT,SPSS for student t-test, ANOVA, etc.),	
	hypothesis testing.	
	RESEARCH ETHICS, IPR AND SCHOLARY	9
3	PUBLISHING	
	Ethics-ethical issues, ethical committees (human &	
	animal); IPR- intellectual property rights and patent	
	law, commercialization, copy right, royalty, trade	
	related aspects of intellectual property rights (TRIPS);	
	scholarly publishing- IMRAD concept and design of	
	research paper, citation and acknowledgement,	
	plagiarism, reproducibility and accountability.	
	INTERPRETATION AND REPORT WRITING	9
4.	Meaning of Interpretation, Technique of Interpretation,	
	Precaution in Interpretation, Significance of Report	
	Writing, Different Steps in Writing Project Report,	
	Layout of the Project/Research Report, Types of	
	Reports, Oral Presentation, Mechanics of Writing a	
	Project/Research Report, Precautions for Writing	
	Research Reports, Conclusions.	

Text book and Reference books:

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes.
- 4. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 5. Wadehra, B.L. 2000. Law relating to patents, trade marks, copyright designs and geographical indications. Universal Law Publishing.

Additional reading

- 1. Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon.
- 2. Carlos, C.M., 2000. Intellectual propertyrights, the WTO and developing countries: the TRIPS agreement and policy options. Zed Books, New York.
- 3. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.
- 4. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.
- 5. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- 6. Leedy, P.D. and Ormrod, J.E., 2004 Practical Research: Planning and Design, Prentice Hall.
- 7. Satarkar, S.V., 2000. Intellectual property rights and Copy right. Ess Ess Publications.

Soft Skill & Interpersonal Communication

Code: OEC-AIML802C

Name of the Course: Soft Skill & Interpersonal Communication			
Course Code: OEC-AIML802C	Seme	ester: VIII	
Duration: 6 months	Maxi	mum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week Mid Semes		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
A		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: A New Approach To Learning, Planning And Goal-Setting, Human Perceptions: Understanding People, Types Of Soft Skills: Self-Management Skills, Aiming For Excellence: Developing Potential And Self- Actualization, Need Achievement And SpiritualIntelligence	5	
2	Conflict Resolution Skills: Seeking Win-Win Solution, Inter-Personal Conflicts: Two Examples, Inter-Personal Conflicts: Two Solutions, Types Of Conflicts: Becoming A Conflict Resolution Expert Types Of Stress: Self-Awareness About Stress, Regulating Stress: Making The Best Out Of Stress	5	
3	Habits: Guiding Principles, Habits: IdentifyingGood And Bad Habits, Habits: Habit Cycle, Breaking Bad Habits, Using The ZeigarnikEffect For Productivity And Personal Growth,	5	
	Forming Habits Of Success		
4.	Communication: Significance Of Listening, Communication: Active Listening, Communication: Barriers To Active Listening, Telephone Communication: Basic Telephone Skills , Telephone Communication: Advanced Telephone Skills, Telephone Communication: Essential Telephone Skills	5	

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Artificial Intelligence and Machine Learning

(Applicable from the academic session 2020-2021)

	(Applicable from the academic session 2020-2021)		ı
5.	Technology And Communication: Technological Personality, Technology And Communication: Mobile Personality?, Topic: Technology And Communication: E-Mail Principles, Technology And Communication: How Not To Send E-Mails!, Technology And Communication: Netiquette, Technology And Communication: E-Mail Etiquette	5	
6	Communication Skills: Effective Communication, Barriers To Communication: Arising Out Of Sender/Receiver's Personality, Barriers To Communication: Interpersonal Transactions, Barriers To Communication: Miscommunication, Non-Verbal Communication: Pre-Thinking Assessment-1, Non-Verbal Communication: Pre-ThinkingAssessment-2	5	
7	Nonverbal Communication: Introduction And Importance, Non-Verbal Communication: Issues And Types, Non-Verbal Communication: Basics And Universals, Non- Verbal Communication: Interpreting Non-Verbal Cues, Body Language: For Interviews, Body Language: For Group Discussions	5	
	Presentation Skills: Overcoming Fear,	5	
8	Presentation Skills: Becoming A Professional, Presentation Skills: The Role Of Body Language, Presentation Skills: Using Visuals, :Reading Skills: Effective Reading, Human Relations: Developing Trust And Integrity		

TEXT BOOKS AND REFERENCES

- 1. Dorch, Patricia. *What Are Soft Skills*? New York: Execu Dress Publisher, 2013.
- 2. Kamin, Maxine. Soft Skills Revolution: A Guide for Connecting with Compassion for Trainers, Teams, and Leaders. Washington, DC: Pfeiffer & Company, 2013.
- 3. Klaus, Peggy, Jane Rohman & Molly Hamaker. *The Hard Truth about Soft Skills*. London: HarperCollins E-books, 2007.
- 4. Petes S. J., Francis. *Soft Skills and Professional Communication*. New Delhi: Tata McGraw-Hill Education, 2011.
- 5. Stein, Steven J. & Howard E. Book. *The EQ Edge: Emotional Intelligence and Your Success*. Canada: Wiley & Sons, 2006.

Project-II

Code: PROJ-AIML 881

Contact: 12P

Project Work II & Dissertation

The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fullytheoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- 1. In depth study of the topic assigned in the light of the Reportprepared under EC P1;
- 2. Review and finalization of the Approach to the Problem relatingto the assigned topic;
- 3. Preparing an Action Plan for conducting the investigation, including teamwork;
- 4. Detailed Analysis/Modelling/Simulation/Design/ProblemSolving/Experiment as needed;
- 5. Final development of product/process, testing, results, conclusions and future directions;
- 6. Preparing a paper for Conference presentation/Publication in Journals, if possible;
- 7. Preparing a Dissertation in the standard format for beingevaluated by the Department.
- 8. Final Seminar Presentation before a Departmental Committee.